数学
如图△ABC中,过点A分别作∠ABC、∠ACB的外角的平分线的垂线AD,AE,D,E为垂足.
求证:(1)ED∥BC;
(2)
ED=
1
2
(AB+AC+BC)
.
(2013·明溪县质检)已知:如图,·ABCD中,E、F分别是边AB、CD的中点.
(1)求证:四边形EBFD是平行四边形;
(2)若AD=AE=2,∠A=60°,求四边形EBFD的周长.
(2011·岳池县模拟)如图所示,在梯形ABCD中,AD∥BC,AD<BC,F,E分别是对角线AC,BD的中点.
求证:EF=
1
2
(BC-AD).
(2009·宜宾县一模)已知,如图,AB、CD相交于点O,AC∥DB,AO=BO,E、F分别是OC、OD中点.
求证:四边形AFBE是平行四边形.
(2006·厦门模拟)如图,已知:在△ABC中,∠BAC=90°,延长BA到点D,使AD=
1
2
AB,点G、E、F分别为边AB、BC、AC的中点.求证:DF=BE.
(2008·延庆县二模)(1)如图所示,BD,CE分别是△ABC的外角平分线,过点A作AF⊥BD,AG⊥CE,垂足分别为F,G,连接FG,延长AF,AG,与直线BC分别交于点M、N,那么线段FG与△ABC的周长之间存在的数量关系是什么?
即:FG=
1
2
1
2
(AB+BC+AC)
(直接写出结果即可)
(2)如图,若BD,CE分别是△ABC的内角平分线;其他条件不变,线段FG与△ABC三边之间又有怎样的数量关系?请写出你的猜想,并给予证明.
(3)如图,若BD为△ABC的内角平分线,CE为△ABC的外角平分线,其他条件不变,线段FG与△ABC三边又有怎样的数量关系?直接写出你的猜想即可.不需要证明.答:线段FG与△ABC三边之间数量关系是
GF=
1
2
(AC+BC-AB)
GF=
1
2
(AC+BC-AB)
.
如图,已知四边形ABCD,AB∥DC,点F在AB的延长线上,连接DF交BC于E且S
△DCE
=S
△FBE
.
(1)求证:△DCE≌△FBE;
(2)若BE是△ADF的中位线,且BE+FB=6厘米,求DC+AD+AB的长.
已知:正方形ABCD中,对角线AC、BD相交于点O,∠BAC的平分线AF交BD于点E,交BC于点F,
求证:OE=
1
2
CF.
如图,在四边形ABCD中,点E是线段AD上的任意一点(E与A、D不重合),G、F、H分别是BE、BC、CE的中点.
(1)证明:四边形EGFH是平行四边形;
(2)EF和BC满足什么关系时,平行四边形EGFH是正方形?
如图,已知AG⊥BD,AF⊥CE,BD,CE分别是∠ABC和∠ACB的角平分线,若BF=2,ED=3,GC=4.
(1)求FG的长;
(2)求△ABC周长.
第一页
上一页
31
32
33
34
35
下一页
最后一页
1284673
1284675
1284678
1284680
1284682
1284684
1284686
1284689
1284691
1284693