题目:
(2008·延庆县二模)(1)如图所示,BD,CE分别是△ABC的外角平分线,过点A作AF⊥BD,AG⊥CE,垂足分别为F,G,连接FG,延长AF,AG,与直线BC分别交于点M、N,那么线段FG与△ABC的周长之间存在的数量关系是什么?
即:FG=
(AB+BC+AC)
(直接写出结果即可)

(2)如图,若BD,CE分别是△ABC的内角平分线;其他条件不变,线段FG与△ABC三边之间又有怎样的数量关系?请写出你的猜想,并给予证明.

(3)如图,若BD为△ABC的内角平分线,CE为△ABC的外角平分线,其他条件不变,线段FG与△ABC三边又有怎样的数量关系?直接写出你的猜想即可.不需要证明.答:线段FG与△ABC三边之间数量关系是
.
答案
(1)FG=
(AB+BC+AC);
(2)答:FG=
(AB+AC-BC);
证明:延长AG交BC于N,延长AF交BC于M
∵AF⊥BD,AG⊥CE,

∴∠AGC=∠CGN=90°,∠AFB=∠BFM=90°
在Rt△AGC和Rt△CGN中
∠AGC=∠CGN=90°,CG=CG,∠ACG=∠NCG
∴Rt△AGC≌Rt△CGN
∴AC=CN,AG=NG
同理可证:AF=FM,AB=BM.
∴GF是△AMN的中位线
∴GF=
MN.
∵AB+AC=MB+CN=BN+MN+CM+MN,BC=BN+MN+CM
∴AB+AC-BC=MN
∴GF=
MN=
(AB+AC-BC);
(3)线段FG与△ABC三边之间数量关系是:GF=
(AC+BC-AB).