数学
(1998·温州)如图,正方形ABCD的边长为1,P是对角线BD上一点,过P作EF∥AB,分别交AD,BC于点E、F,CP的延长线交AD于点G,O是PC的中点,FO的延长线交DC于点K.
(1)求证:PF=CK;
(2)设DG=x,△CKO的面积为S
1
,四边形POKD的面积为S
2
,
y=
S
1
S
2
.求y关于x的函数关系式及自变量x的取值范围,并在下
面的直角坐标系中画出这个函数的图象.
(1998·杭州)如图,过正方形ABCD的顶点A作直线交BD于E,交CD于F,交BC的延长线于G.若H是FG的中点,求证:EC⊥CH.
(2013·苏州一模)如图,正方形ABCD中,BE=CF.
(1)求证:△BCE≌△CDF;
(2)求证:CE⊥DF;
(3)若CD=4,且DG
2
+GE
2
=18,则AE=
2
2
.
(2013·松北区一模)如图1,正方形ABCD中,E为BC上一点,过B作BG⊥AE于G,延长BG至点F使∠CFB=45°
(1)求证:AG=FG;
(2)如图2延长FC、AE交于点M,连接DF、BM,若C为FM中点,BM=10,求FD的长.
(2013·青铜峡市模拟)如图,点E是正方形ABCD内一点,△CDE是等边三角形,连接EB、EA.
求证:△ADE≌△BCE.
(2013·历城区一模)如图,ABCD是正方形,G是BC上(除端点外)的任意一点,DE⊥AG于点E,BF⊥AG于点F.求证:AE=BF.
(2013·惠城区模拟)如图,点E为正方形ABCD的边CD上一点.
(1)在AB的下方,作射线AF交CB延长线于点F,使∠BAF=∠DAE.(要求:用尺规作图,保留作图痕迹,不写作法和证明);
(2)在(1)的条件下,求证:△DAE≌△BAF.
(2013·德惠市二模)【观察与发展】等边三角形OAB和等边三角形OCD如图①放置,发现△OAC≌△OBD.
【画图与推广】如果将图①中的等边三角形OAB和等边三角形OCD换为等腰三角形OAB和等腰三角形OCD,且它们的顶角∠AOB和∠COD相等,△OAC和△OBD是否全等?在图②中画出图形并说明理由.
【类比与应用】将图①中的等边三角形OAB和等边三角形OCD换为正方形OAEB和正方形OCFD如图③所示,若正方形OAEB的边长为3,求阴影部分图形的面积.
(2013·常州模拟)如图,E是正方形ABCD的边AD上的动点,F是边BC延长线上的一点,且BF=EF,AB=12,设AE=x,BF=y.
(1)当△BEF是等边三角形时,求BF的长;
(2)求y与x的函数解析式,并写出它的定义域;
(3)把△ABE沿着直线BE翻折,点A落在点A′处,试探索:△A′BF能否为等腰三角形?如果能,请求出AE的长;如果不能,请说明理由.
(2013·北碚区模拟)如图,已知正方形ABCD,点E是BC上一点,点F是CD延长线上一点,连接EF,若BE=DF,点P是EF的中点.
(1)求证:DP平分∠ADC;
(2)若∠AEB=75°,AB=2,求△DFP的面积.
第一页
上一页
105
106
107
108
109
下一页
最后一页
1243233
1243235
1243238
1243240
1243242
1243244
1243246
1243248
1243250
1243252