数学
(2009·丰泽区质检)如图,E是正方形ABCD的边DC上的一点,过A作AF⊥AE,交CB延长线于点F,求证:△ADE≌△ABF.
(2009·保定二模)正方形ABCD中,点P是CD所在直线上一点,连接PA,分别过B、D作BE⊥PA、DF⊥PA,垂足分别为E、F.
(1)如图1,当点P在DC边上时,通过观察或测量,猜想线段BE、DF、EF应满足怎样的数量关系,并证明你的猜想;
(2)如图2,当点P在DC的延长线上时,通过观察或测量,猜想线段BE、DF、EF应满足怎样的数量关系,并证明你的猜想;
(3)如图3,当点P在CD的延长线上时,线段BE、DF、EF又具有怎样的数量关系,请直接写出结论(不必进行证明).
(2008·上虞市模拟)九(下)“几何回顾”一章中,课本有一习题:如图1,正方形ABCD的对角线AC、BD交于点O,OE=OF.求证:∠ACF=∠DBE.
小敏在完成题目的证明后的总结回顾中,对BE与CF的位置关系进行了探索:
(1)小敏发现:在图1中,CF⊥BE.请你替小敏写出证明过程.
(2)小敏继而猜想:如果E在CA的延长线上,而F在DB或BD的延长线上时,CF⊥BE仍然成立.你认为小敏的这个猜想是否正确?请你分别在图2和图3中,通过作图进行判断,并给出证明
(2008·绵阳模拟)(1)已知△ABC是等腰直角三角形,现分别以它的直角边BC、斜边AB为边向外作正方形BCEF、ABMN,如图甲,连接MF,延长CB交MF于D.试观测DF与DM的长度关系,你会发现
DF=DM
DF=DM
.
(2)如果将(1)中的△ABC改为非等腰的直角三角形,其余作法不变,如图乙,这时D点还具有(1)的结论吗?请证明你的判断.
(3)如果将(1)中的△ABC改为锐角三角形,仍以其中的两边分别向外作正方形,如图丙,则应在图中过B点作△ABC的
高
高
线,它与MF的交点D恰好也具有(1)的结论.请证明在你的作法下结论的正确性.
(2008·门头沟区二模)如图,正方形ABCD绕点A逆时针旋转n°后得到正方形AEFG,边EF与CD交于点O.
(1)请在图中连接两条线段(正方形的对角线除外).要求:①所连接的两条线段是以图中已标有字母的点为端点;②所连接的两条线段互相垂直.
(2)若正方形的边长为2cm,重叠部分(四边形AEOD)的面积为
4
3
3
c
m
2
,旋转的角度n是多少度?请说明理由.
(2008·丰台区二模)用两个全等的正方形ABCD和DCEF拼成一个矩形ABEF,把一个足够大的直角三角尺的直角顶点与这个矩形的边AF的中点D重合,且将直角三角尺绕点D按逆时针方向旋转.
(1)当直角三角尺的两直角边分别与矩形ABEF的两边BE、EF相交于点G、H时,(如图甲),通过观察或测量BG与EH的长度,你能得到什么结论?并证明你的结论.
(2)当直角三角尺的两直角边分别与BE、EF的延长线相交于点G、H时(如图乙),你在图甲中得到的结论还成立吗?简要说明理由.
(2)得到的结论
成立
成立
.(填写“成立”、“不成立”)
(2007·中山区一模)如图1,若把“Rt△ABC”改为正方形ABCD,“△AMN绕点A旋转”改为正方形AMNE绕点A旋转,是否有与上题(3)中类似的结论成立,请利用图2进行操作,并写出结论,说明理由.
(2007·中山区二模)已知:如图1,点O为正方形ABCD内任一点,连接AO、BO,分别以AO、BO为一边作如图所示正方形BOMN和正方形AOFE,连接CN
(1)AE、CN之间有怎样的关系?请验证;
(2)若点O是正方形ABCD外部一点,如图2,其他条件不变(1)的结论是否成立?请验证.
(2007·甘井子区模拟)如图,正方形ABCD中,E、F分别是AD、AB的中点,过点A作AM⊥BE,交对角线BD于M,连接ME.
探究ME与DF之间的位置关系并证明.
说明:
(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写3步);
(2)在你经历说明(1)的过程之后,可以从下列①、②中选取一个补充或更换已知条件,完成你的证明.
注意:选取①完成证明得10分;选取②完成证明得5分.
①可画出将△ABE沿BA方向平移BA的长度,再绕点A顺时针旋转90°后的图形;
②∠DEM=∠AEB.
(2007·甘井子区模拟)如图,正方形ABCD中,若E、F分别是AD、AB上的点,且AE=AF.过点A作AM⊥BE,交对角线BD于M,过点M作MG⊥DF,交AD于N,交BE的延长线于G.探究BG、AM、MG之间的数量关系并证明.
第一页
上一页
100
101
102
103
104
下一页
最后一页
1243132
1243133
1243135
1243138
1243139
1243141
1243143
1243145
1243147
1243148