试题
题目:
(2009·保定二模)正方形ABCD中,点P是CD所在直线上一点,连接PA,分别过B、D作BE⊥PA、DF⊥PA,垂足分别为E、F.
(1)如图1,当点P在DC边上时,通过观察或测量,猜想线段BE、DF、EF应满足怎样的数量关系,并证明你的猜想;
(2)如图2,当点P在DC的延长线上时,通过观察或测量,猜想线段BE、DF、EF应满足怎样的数量关系,并证明你的猜想;
(3)如图3,当点P在CD的延长线上时,线段BE、DF、EF又具有怎样的数量关系,请直接写出结论(不必进行证明).
答案
解:(1)BE-DF=EF,
对图1中结论证明如下:
∵BE⊥PA,DF⊥PA,
∴∠BEA=∠AFD=90°,
∵四边形ABCD是正方形,
∴AB=AD,∠BAD=90°,
∴∠BAE+∠DAF=∠ADF+∠DAF=90°,
∴∠BAE=∠ADF,
在△BAE和△ADF中
∠BEA=∠AFD
∠BAE=∠ADF
AB=AD
,
∴△BAE≌△ADF(AAS),
∴BE=AF,AE=DF,
∵AF-AE=EF,
∴BE-DF=EF.
(2)DF=BE+EF,
证明:∵四边形ABCD是正方形,
∴AB=AD,∠BAE+∠DAF=90°,
∵BE⊥PA、DF⊥PA,
∴∠AEB=∠DFA=90°,
∴∠BAE+∠ABE=90°,
∴∠ABE=∠DAF,
∴△ABE≌△DAF(AAS),
∴BE=AF,AE=DF,
∵AE=AF+EF,
∴DF=EB+EF.
(3)EF=BE+DF.
解:(1)BE-DF=EF,
对图1中结论证明如下:
∵BE⊥PA,DF⊥PA,
∴∠BEA=∠AFD=90°,
∵四边形ABCD是正方形,
∴AB=AD,∠BAD=90°,
∴∠BAE+∠DAF=∠ADF+∠DAF=90°,
∴∠BAE=∠ADF,
在△BAE和△ADF中
∠BEA=∠AFD
∠BAE=∠ADF
AB=AD
,
∴△BAE≌△ADF(AAS),
∴BE=AF,AE=DF,
∵AF-AE=EF,
∴BE-DF=EF.
(2)DF=BE+EF,
证明:∵四边形ABCD是正方形,
∴AB=AD,∠BAE+∠DAF=90°,
∵BE⊥PA、DF⊥PA,
∴∠AEB=∠DFA=90°,
∴∠BAE+∠ABE=90°,
∴∠ABE=∠DAF,
∴△ABE≌△DAF(AAS),
∴BE=AF,AE=DF,
∵AE=AF+EF,
∴DF=EB+EF.
(3)EF=BE+DF.
考点梳理
考点
分析
点评
正方形的性质;全等三角形的判定与性质.
(1)根据正方形的性质可知证出△ABE≌△ADF,利用全等三角形的性质,BE=AF,AE=DF,得出BE-DF=EF;
(2)同(1)可得出图(2)中DF-BE=EF;
(3)同(1)可得出图(3)中DF+BE=EF.
此题主要考查了正方形的性质和全等三角形的判定.充分利用正方形的特殊性质来找到全等的条件从而判定全等后利用全等三角形的性质解题.
找相似题
(2013·枣庄)如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为( )
(2013·雅安)如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S
△CEF
=2S
△ABE
.其中正确结论有( )个.
(2013·台湾)如图,四边形ABCD、AEFG均为正方形,其中E在BC上,且B、E两点不重合,并连接BG.根据图中标示的角判断下列∠1、∠2、∠3、∠4的大小关系何者正确?( )
(2013·随州)如图,正方形ABCD中,AB=3,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG,CF.下列结论:①点G是BC中点;②FG=FC;③S
△FGC
=
9
10
.
其中正确的是( )
(2013·南京)设边长为3的正方形的对角线长为a.下列关于a的四种说法:①a是无理数;②a可以用数轴上的一个点来表示;③3<a<4;④a是18的算术平方根.其中,所有正确说法的序号是( )