试题
题目:
(2008·门头沟区二模)如图,正方形ABCD绕点A逆时针旋转n°后得到正方形AEFG,边EF与CD交于点O.
(1)请在图中连接两条线段(正方形的对角线除外).要求:①所连接的两条线段是以图中已标有字母的点为端点;②所连接的两条线段互相垂直.
(2)若正方形的边长为2cm,重叠部分(四边形AEOD)的面积为
4
3
3
c
m
2
,旋转的角度n是多少度?请说明理由.
答案
解:(1)AO⊥DE.
证明:∵在Rt△ADO与Rt△AEO中,
AD=AE
AO=AO
,
∴Rt△ADO≌Rt△AEO(HL),
∴∠DAO=∠OAE(即AO平分∠DAE),
∴AO⊥DE(等腰三角形的三线合一).
(2)n=30°.
理由:连接AO,
∵四边形AEOD的面积为
4
3
3
,
∴三角形ADO的面积
AD×DO
2
=
2
3
3
,
∵AD=2,
∴DO=
2
3
3
,
在Rt△ADO中,
∵tan∠DAO=
DO
AD
=
3
3
,
∴∠DAO=30°,
∴∠EAD=60°,∠EAB=30°,
即n=30°.故旋转的角度n是30°.
解:(1)AO⊥DE.
证明:∵在Rt△ADO与Rt△AEO中,
AD=AE
AO=AO
,
∴Rt△ADO≌Rt△AEO(HL),
∴∠DAO=∠OAE(即AO平分∠DAE),
∴AO⊥DE(等腰三角形的三线合一).
(2)n=30°.
理由:连接AO,
∵四边形AEOD的面积为
4
3
3
,
∴三角形ADO的面积
AD×DO
2
=
2
3
3
,
∵AD=2,
∴DO=
2
3
3
,
在Rt△ADO中,
∵tan∠DAO=
DO
AD
=
3
3
,
∴∠DAO=30°,
∴∠EAD=60°,∠EAB=30°,
即n=30°.故旋转的角度n是30°.
考点梳理
考点
分析
点评
专题
正方形的性质;全等三角形的判定与性质;旋转的性质.
(1)易证Rt△ADO≌Rt△AEO,得到∠DAO=∠OAE,则问题得证;
(2)四边形AEOD,若连接OA,则OA把四边形评分成两个全等的三角形,根据解直角三角形得条件就可以求出旋转的角度.
本题考查了正方形和旋转的性质,利用旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变是解题关键.
几何综合题.
找相似题
(2013·枣庄)如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为( )
(2013·雅安)如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S
△CEF
=2S
△ABE
.其中正确结论有( )个.
(2013·台湾)如图,四边形ABCD、AEFG均为正方形,其中E在BC上,且B、E两点不重合,并连接BG.根据图中标示的角判断下列∠1、∠2、∠3、∠4的大小关系何者正确?( )
(2013·随州)如图,正方形ABCD中,AB=3,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG,CF.下列结论:①点G是BC中点;②FG=FC;③S
△FGC
=
9
10
.
其中正确的是( )
(2013·南京)设边长为3的正方形的对角线长为a.下列关于a的四种说法:①a是无理数;②a可以用数轴上的一个点来表示;③3<a<4;④a是18的算术平方根.其中,所有正确说法的序号是( )