数学
哪个获胜机会多
同学们是否做过这样的游戏:一个同学手中握着4根同颜色、同长短的细绳,只露出它们的头和尾(如图).请另一个同学把4个头分成两组,把每组的两个头相接,4个尾也分成两组,把每组的两个尾分别相接.放开手后,如果4根细绳连成一个圆环,就算接绳子的同学获胜,否则,就算握绳子的同学获胜.如果是你,你会选择充当哪个同学的角色呢?
甲、乙、丙三位同学玩抛掷A、B两枚硬币的游戏,游戏规则是这样:抛出A币正面和B币正面,甲赢;抛出A币反面和B币反面,乙赢;抛出A币正面和B币反面,丙赢.在这个游戏中,谁赢的机会最大( )
小明和小白做游戏,先是各自背着对方在手心写一个正整数,然后都拿给对方看,他们约定:若两人所写的数字之和是偶数,则小明获胜;若和是奇数,则小白获胜;那么对于这个游戏,下列说法正确的是( )
(2007·呼伦贝尔)有两个可以自由转动的均匀转盘A、B,分别被分成4等份、3等份,并在每份内均标有数字,如图所示,丁洋和王倩同学用这两个转盘做游戏,游戏规则如下:①分别转动转盘A和B;②两个转盘停止后,将两个指针所指份内的数字相加(如果指针恰好停在等分线上,那么重转一次,直到指针
指向某一份为止);③如果和为0,丁洋获胜,否则,王倩获胜.
(1)用列表法(或树状图)求丁洋获胜的概率;
(2)你认为这个游戏对双方公平吗?请说明理由.
(2006·永春县)A袋中有2个红球和1个白球,B袋中有1个红球和2个白球(这些球除颜色外没有其它区别),甲、乙两人分别从A、B袋中各摸出一个球.游戏规定,两个小球颜色相同时,甲获胜;两个小球颜色不同时,乙获胜.
(1)用列表法(或画树状图)求甲获胜的概率;
(2)你认为这个游戏公平吗?请简要说明理由.
(2006·无锡)甲、乙两人都想去买一本某种辞典,到书店后,发现书架上只有一本该辞典,于是两人都想把书让给对方先买,为此两人发生了“争执”.最后两人商定,用掷一枚各面分别标有数字1,2,3,4的正四面体骰子来决定谁先买.若甲赢,则乙买;若乙赢,则甲买.具体规则是:“每人各掷一次,若甲掷得的数字比乙大,则甲赢;若甲掷得的数字不比乙大,则乙赢”.
请你用“画树状图”的方法帮他们分析一下,这个规则对甲、乙双方是否公平?
(2006·青海)王强、张华用4个乒乓球做游戏,这些乒乓球上分别标有数字2,3,6,6(乒乓球的形状、大小、质量相同),他俩将乒乓球放入盒内搅匀后,王强先摸,摸出后不放回,张华再摸.
(1)请你用树状图或列表分析,求出张华摸到标有数字3的乒乓球的概率;
(2)他俩约定:若王强摸到的球面数字比张华的大,则王强赢;若王强摸到的球面数字不大于张华的,则张华赢.你认为这个游戏公平吗?如果公平,请说明理由;如果不公平,请你制定得分规则,使游戏变得公平.
(2006·青岛)小明和小亮用如下的同一个转盘进行“配紫色”游戏.游戏规则如下:连续转动两次转盘,如果两次转盘转出的颜色相同或配成紫色(若其中一次转盘转出蓝色,另一次转出红色,则可配成紫色),则小明得1分,否则小亮得1分.你认为这个游戏对双方公平吗?请说明理由;若不公平,请你修改规则使游戏对双方公平.
(2006·辽宁)有两个可以自由转动的均匀转盘A,B,均被分成4等份,并在每份内都标有数字(如图所示).李明和王亮同学用这两个转盘做游戏.阅读下面的游戏规则,并回答下列问题:
(1)用树状图或列表法,求两数相加和为零的概率;
(2)你认为这个游戏规则对双方公平吗?若公平,请说明理由;若不公平,请修改游戏规则中的赋分标准,使游戏变得公平.
(2006·包头)小刚和小明玩抛掷硬币游戏.其规则是:两人轮流同时抛掷三枚均匀的硬币,如果掷得“两正一反”,那么小刚得6分,否则小明得4分.
(1)试用列举法(列表法或画树状图)分析并求出同时抛掷三枚均匀的硬币出现“两正一反”的概率;
(2)按照现在的游戏得分规则,你认为该游戏对两人是否公平?请说明理由;如果不公平,请你设计一种得分方式,使这个游戏对两人都公平,并说明理由.
第一页
上一页
121
122
123
124
125
下一页
最后一页
1113879
1113882
1113884
1113886
1113888
1113890
1113891
1113893
1113895
1113898