试题
题目:
(2006·青岛)小明和小亮用如下的同一个转盘进行“配紫色”游戏.游戏规则如下:连续转动两次转盘,如果两次转盘转出的颜色相同或配成紫色(若其中一次转盘转出蓝色,另一次转出红色,则可配成紫色),则小明得1分,否则小亮得1分.你认为这个游戏对双方公平吗?请说明理由;若不公平,请你修改规则使游戏对双方公平.
答案
解:
第二次
第一次
红
黄
蓝
红
(红,红)
(红,黄)
(红,蓝)
黄
(黄,红)
(黄,黄)
(黄,蓝)
蓝
(蓝,红)
(蓝,黄)
(蓝,蓝)
(2分)
从表中可以得到:P(小明获胜)=
5
9
,P(小亮获胜)=
4
9
.
∴小明的得分为
5
9
×1=
5
9
,小亮的得分为
4
9
×1=
4
9
.
∵
5
9
>
4
9
,
∴游戏不公平.(4分)
修改规则不唯一.如若两次转出颜色相同或配成紫色,则小明得4分,否则小亮得5分.(6分)
解:
第二次
第一次
红
黄
蓝
红
(红,红)
(红,黄)
(红,蓝)
黄
(黄,红)
(黄,黄)
(黄,蓝)
蓝
(蓝,红)
(蓝,黄)
(蓝,蓝)
(2分)
从表中可以得到:P(小明获胜)=
5
9
,P(小亮获胜)=
4
9
.
∴小明的得分为
5
9
×1=
5
9
,小亮的得分为
4
9
×1=
4
9
.
∵
5
9
>
4
9
,
∴游戏不公平.(4分)
修改规则不唯一.如若两次转出颜色相同或配成紫色,则小明得4分,否则小亮得5分.(6分)
考点梳理
考点
分析
点评
专题
游戏公平性.
游戏是否公平,关键要看是否游戏双方赢的机会是否相等,即判断双方取胜的概率是否相等,或转化为在总情况明确的情况下,判断双方取胜所包含的情况数目是否相等.
本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.
开放型.
找相似题
小宏和小倩抛硬币游戏,规定:将一枚硬币连抛三次,若三次国徽都朝上则小宏胜,若三次中只有一次国徽朝上则小倩胜,你认为这种游戏公平吗( )
(2005·泉州质检)一个箱子中放有红、黄、黑三种小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,摸出黑色小球为赢,这个游戏是( )
若“抢30”游戏,规划是:第一个人先说“1”或“1、2”,第二个人要接着往下说一个或两个数,然后又轮到第一个人,再接着往下说一个或两个数,这样两人反复轮流,每次每人说一个或两个数都可以,但是不可以连说三个数,谁先抢到30,谁就得胜,若改成“抢32”,那么采取适当策略,其结果是( )
小明用瓶盖设计了一个游戏:任意掷一个瓶盖;如果盖底着地,则甲胜;如果盖口着地,则乙胜.你认为这个游戏( )
在一个布口袋中装着只有颜色不同,其他都相同的白、红、黑三种颜色的小球各1只,甲、乙两人进行模球游戏:甲先从袋中摸出一球看清颜色后放回,再由乙从袋中摸出一球.如果规定:乙摸到与甲相同颜色的球为乙胜,否则为输,则乙在游戏中能获胜的概率为( )