数学
(2013·桥东区二模)如图,Rt△ABC在平面直角坐标系中,BC在x轴上,B(-1,0)、A(0,2),AC⊥AB.
(1)求线段OC的长.
(2)点P从B点出发以每秒4个单位的速度沿x轴正半轴运动,点Q从A点出发沿线段AC以
5
个单位每秒速度向点C运动,当一点停止运动,另一点也随之停止,设△CPQ的面积为S,两点同时运动,运动的时间为t秒,求S与t之间关系式,并写出自变量取值范围.
(3)Q点沿射线AC按原速度运动,⊙G过A、B、Q三点,是否有这样的t值使点P在⊙G上?如果有求t值,如果没有说明理由.
(2013·平阳县二模)如图,AB、CD是⊙O的直径,弦AE⊥CD于点F,延长BE、AD交于点G.
(1)求证:CD∥BG;
(2)若BE=4,OF=
1
2
DF;
①求证:DF=BE.
②求tanG的值.
(2013·淮北模拟)如图,已知AB是⊙O的直径,点C、D在⊙O上,且AB=10,AC=8.
(1)如果OE⊥AC,垂足为E,求OE的长;
(2)求tan∠ADC的值.
(2013·鼓楼区一模)已知A、B、C三点均在⊙O上,且△ABC是等边三角形.
(1)如图,用直尺和圆规作出△ABC;(不写作法,保留作图痕迹)
(2)若点P是
BC
上一点,连接PA、PB、PC.探究PA、PB、PC之间的等量关系并说明理由.
(2012·镇赉县模拟)如图,在半圆O中,AB为直径,弦AP与BE相交于F,连接AE、BP,AP平分∠EAB.
(1)求证:△AEF∽△APB;
(2)若AE:AP=2:3,AF=4,求⊙O的半径.
(2012·宜昌模拟)如图,△ABC内接于⊙O,AC=AB,∠BAC=50°,
(1)作出圆心O;(要求用尺规作图,不写作法和证明,保留作图痕迹)
(2)经过点B作直径BF,连接AF,求∠AFB和∠ABF的度数.
已知AB是⊙O的直径,AC,AD是弦,且AB=2,AC=
2
,AD=1,则圆周角∠CAD的度数是( )
如图,AB和CD都是⊙O的直径,∠AOC=56°,则∠C的度数是( )
如图所示,若圆心角∠AOB=100°,则圆周角∠ACB为( )
圆的一条弦长等于它的半径,那么这条弦所对的圆周角的度数是( )
第一页
上一页
15
16
17
18
19
下一页
最后一页
1047971
1047973
1047976
1047978
1047980
1047983
1047985
1047988
1047990
1047992