数学
如图所示,过线段AB的两端作直线l
1
∥l
2
,作同旁内角的平分线交于点E,过点E
作直线DC分别和直线l
1
、l
2
交点D、C,且点D、C在AB的同侧,与A、B不重合.
(1)比较AD+BC和AB的数量关系,写出你的结论;
(2)用已学过的原理对结论加以分析,揭示其中的规律.
已知:如图,∠1=∠2,∠C=∠D.求证:AC=AD.
如图,A,B,C,D四点共线,AB=CD.∠ECA=∠FDB=Rt∠,AE=BF
求证:AE∥BF.
如图,点B、D在线段AE上,BC∥EF,AD=BE,BC=EF.
求证:
(1)∠C=∠F;
(2)AC∥DF.
如图已知BE⊥AD,CF⊥AD,垂足分别为E、F,且BE=CF.试说明BD=CD的理由.
已知:如图,F、C是AD上的两点,且AB=DE,AF=DC,BC=EF.
求证:AB∥ED.
在△ABC中,已知D为直线BC上一点,若∠ABC=x°,∠BAD=y°.
(1)当D为边BC上一点,并且CD=CA,x=40,y=30时,则AB
=
=
AC(填“=”或“≠”);
(2)如果把(1)中的条件“CD=CA”变为“CD=AB”,且x,y的取值不变,那么(1)中的结论是否仍成立?若成立请写出证明过程,若不成立请说明理由;
(3)若CD=CA=AB,请写出y与x的关系式及x的取值范围.(不写解答过程,直接写出结果)
三角板是我们数学学习必不可少的工具,如图1是一副含45°和30°的三角板,其中三角板ABC中,∠A=∠B=45°,AC=BC;三角板DEF中,∠D=60°,∠E=30°.
现在我们进行如下操作:把含30°的三角板的直角顶点F位于另一三角板的斜边中点上,边FD与AC相交于点M,边FE与BC相交于点N,将三角板DEF绕点F旋转,点M、N分别在线段AC、BC上相应移动.
(1)请你探究:当∠AFD=45°时(如图2),FM与FN有怎样的数量关系?请说明理由;
(2)请你猜想:在三角板DEF绕点F旋转过程中,(1)中FM 与FN的数量关系还成立吗?如果成立,请说明理由;如果不成立,请举反例说明(图3供实验、操作备用).
如图,AC=BC,AD=BD,MN分别是AC,BC中点,请问:DM=DN吗?请说明理由.
如图,已知点A、E、F、D在同一条直线上,AE=DF,BF⊥AD,CE⊥AD,垂足分别为F、E,BF=CE,AB与CD位置有什么关系并说明理由.
第一页
上一页
7
8
9
10
11
下一页
最后一页
1042112
1042114
1042116
1042119
1042121
1042124
1042126
1042128
1042130
1042132