试题
题目:
如图,点B、D在线段AE上,BC∥EF,AD=BE,BC=EF.
求证:
(1)∠C=∠F;
(2)AC∥DF.
答案
证明:(1)∵BC∥EF(已知)
∴∠ABC=∠DEF
∵AD=BE
∴AD+DB=DB+BE
即AB=DE
在△ABC与△DEF中
AB=DE
∠ABC=∠E
BC=EF
,
∴△ABC≌△DEF
∴∠C=∠F;
(2)∵△ABC≌△DEF,
∴∠A=∠FDE,
∴AC∥DF.
证明:(1)∵BC∥EF(已知)
∴∠ABC=∠DEF
∵AD=BE
∴AD+DB=DB+BE
即AB=DE
在△ABC与△DEF中
AB=DE
∠ABC=∠E
BC=EF
,
∴△ABC≌△DEF
∴∠C=∠F;
(2)∵△ABC≌△DEF,
∴∠A=∠FDE,
∴AC∥DF.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质.
(1)根据等式的性质得出AB=DE,再有BC∥EF就用∠DBC=∠BEF,证明△ABC≌△DEF就可以得出结论;
(2)由△ABC≌△DEF可以得出∠CAB=∠FDE,就可以得出结论.
本题考查了全等三角形的判定与性质的运用,平行线的性质与判定的运用,解答本题时证明三角形全等是关键.
证明题.
找相似题
如图,已知∠1=∠2,∠3=∠4,EC=AD,求证:AB=BE.
已知∠B=∠C,AB=AC,那么AD=AE吗?并说明理由.
(2012·长春模拟)已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长线于点F,AB=6,求FC的长.
(2011·邢台一模)如图,AB=3AC,AD平分∠BAC,BD⊥AD,BC交AD于点E,CF∥BD.
(1)求证:△ACG≌△AFG
(2)求
FG
BD
的值;
(3)求
EG
ED
的值;
(4)判断AE和DE之间的数量关系,并说明理由.
(2011·蜀山区二模)如图、在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且
AF=BD.
求证:D是BC的中点.