数学
如图,AB是⊙O的直径,PB与⊙O相切于点B,弦AC∥OP,PC交BA的延长线于点D,求证:PD是⊙O的切线.
已知:如图,以Rt△ABC的直角边AB为直径的半圆O,与斜边AC交于D,E是BC边上的中点,连接DE,求证:DE与半圆O相切.
如图所示,以Rt△ABC的直角边AB为直径的⊙O交斜边AC于点E,点D是BC边的中点,连接ED.
(1)试说明:ED是⊙O的切线;
(2)若⊙O 直径为6,线段BC长为8,求AE的长.
如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD,垂足为E,DA平分∠BDE.
(1)求证:AE是⊙O的切线;
(2)若AE=2,DE=1cm,求BD的长.
如图,已知CD为⊙O的直径,点A为DC延长线上一点,B为⊙O上一点,且∠ABC=∠D.
(1)求证:AB为⊙O的切线;
(2)若tanD=
1
2
,求sinA的值.
(2008·黔东南州)如图,AB为⊙O的弦,若OA⊥OD且CD=BD.求证:BD是⊙O的切线.
(2008·兰州)如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD,垂足为E,DA平分∠BDE.
(1)求证:AE是⊙O的切线;
(2)若∠DBC=30°,DE=1cm,求BD的长.
(2008·哈尔滨)如图,在平面直角坐标系中,直线y=
1
2
x+
5
与x轴、y轴分别交于A、B两点,将△ABO绕原点O顺时针旋转得到△A′B′O,并使OA′⊥AB,垂足为D,直线AB与线段A′B′相交于点G.动点E从原点O出发,以1个单位/秒的速度沿x轴正方向运动,设动点E运动的时间为t秒.
(1)求点D的坐标;
(2)连接DE,当DE与线段OB′相交,交点为F,且四边形DFB′G是平行四边形时,(如图2)求此时线段DE所在的直线的解析式;
(3)若以动点为E圆心,以
2
5
为半径作⊙E,连接A′E,t为何值时,Tan∠EA′B′=
1
8
?并判断此时直线A′O与⊙E的位置关系,请说明理由.
(2007·永州)AB是⊙O的直径,D是⊙O上一动点,延长AD到C使CD=AD,连接BC,BD.
(1)证明:当D点与A点不重合时,总有AB=BC;
(2)设⊙O的半径为2,AD=x,BD=y,用含x的式子表示y;
(3)BC与⊙O是否有可能相切?若不可能相切,则说明理由;若能相切,则指出x为何值时相切.
(2007·台州)如图,△ABC内接于⊙O,点D在半径OB的延长线上,∠BCD=∠A=30°.
(1)试判断直线CD与⊙O的位置关系,并说明理由;
(2)若⊙O的半径长为1,求由弧BC、线段CD和BD所围成的阴影部分面积.(结果保留π和根号)
第一页
上一页
11
12
13
14
15
下一页
最后一页
1076759
1076762
1076763
1076765
1076768
1076772
1076774
1076779
1076781
1076784