数学
(2011·番禺区一模)如图,将一个边长为1的正方形纸片ABCD折叠,使点B落在边AD上(不与A、D重合),MN为折痕,折叠后B′C′与DN交于P.
(1)P判断△MAB′与△NC′P是否相似?并说明理由;
(2)当B落在什么位置上时,折叠起来的梯形MNC′B′面积最小,并求此时两纸片重叠部分的面积.
(2011·保定二模)如图,在△ABC中,BC=12,AB=10,sinB=
3
5
,动点D从点A出发,以每秒1个单位的速度沿线段AB向点B 运动,DE∥BC,交AC于点E,以DE为边,在点A的异侧作正方形DEFG.设运动时间为t,
(1)t为何值时,正方形DEFG的边GF在BC上;
(2)当GF运动到△ABC外时,EF、DG分别与BC交于点P、Q,是否存在时刻t,使得△CEP与△BDQ的面积之和等于△ABC面积的
1
4
?
(3)设△ABC与正方形DEFG重叠部分的面积为S,试求S的最大值.
(2010·秀洲区二模)如图1,矩形ABCD中,AB=10cm,AD=6cm,在BC边上取一点E,将△ABE沿AE翻折,使点B落在DC边上的点F处.
(1)求CF和EF的长;
(2)如图2,一动点P从点A出发,以每秒1cm的速度沿AF向终点F作匀速运动,过点P作PM∥EF交AE于点M,过点M作MN∥AF交EF于点N.设点P运动的时间为t(0<t<10),四边形PMNF的面积为S,试探究S的最大值?
(3)以A为坐标原点,AB所在直线为横轴,建立平面直角坐标系,如图3,在(2)的条件下,连接FM,若△AMF为等腰三角形,求点M的坐标.
(2010·石家庄一模)如图所示,四边形ABCD是直角梯形,AB∥DC,AB=6,CD=3,AD=4.动点M、N分别从A、B两点同时出发,点M以每秒1个单位长的速度沿AB向点B运动;点N以每秒1个单位长的速度沿B-C-D运动;当其中一个点到达终点时,另一个
点也随即停止.设两个点的运动时间为t(秒).
(1)线段BC的长为
5
5
;
(2)当t为何值时,MN∥AD?
(3)设△DMN的面积为S,求S与t之间的函数关系式,并指出自变量t的取值范围;S是否有最小值?若有最小值,最小值是多少?
(4)请直接写出MN⊥BD时t的值.
(2010·卢湾区一模)已知正方形ABCD中,AB=5,E是直线BC上的一点,连接AE,过点E作EF⊥AE,交直线CD于点F.
(1)当E点在BC边上运动时,设线段BE的长为x,线段CF的长为y,
①求y关于x的函数解析式及其定义域;
②根据①中所得y关于x的函数图象,求当BE的长为何值时,线段CF最长,并求此时CF的长;
(2)当CF的长为
6
5
时,求tan∠EAF的值.
(2010·荔湾区模拟)如图,在梯形ABCD中,AD∥BC,AD=2,BC=4,点M是AD的中点,△MBC是等边三角形.
(1)求证:梯形ABCD是等腰梯形;
(2)动点P、Q分别在线段BC和MC上运动,且∠MPQ=60°不变.PC=x,MQ=y,求y与x的函数关系式;
(3)在(2)中:①当y最小值时,判断△PQC的形状,并说明理由.②当动点P、Q运动到何处时,以点P、M和点A、B、C、D中的两个点为顶点的四边形是平行四边形?并指出符合条件的平行四边形的个数.
(2010·嘉定区二模)如图:△ACB与△DCE是全等的两个直角三角形,其中∠ACB=∠DCE=90°,AC=4,BC=2,点D、C、B在同一条直线上,点E在边AC上.
(1)直线DE与AB有怎样的位置关系?请证明你的结论;
(2)如图(1)若△DCE沿着直线DB向右平移多少距离时,点E恰好落在边AB上,求平移距离DD′;
(3)在△DCE沿着直线DB向右平移的过程中,使△DCE与△ACB的公共部分是四边形,设平移过程中的平移距离为x,这个四边形的面积为y,求y与x的函数关系式,并写出它的定义域.
(2010·海门市二模)如图,矩形ABCD中,AB=4,AD=8,P是对角线AC上一动点,连接PD,过点P作PE⊥PD交线段BC
于E,设AP=x.
(1)求PD:PE的值;
(2)设DE
2
=y,试求出y与x的函数关系式,并求x取何值时,y有最小值;
(3)当△PCD为等腰三角形时,求AP的长.
(2010·古冶区一模)如图所示,某地计划将一块形状为锐角三角形ABC的空地进行生态环境改造.已知△ABC的边BC长120米,高AD长80米,计划将它分割成△AHG、△BHE、△GFC和矩形EFGH四部分,其中矩形EFGH的一边EF在边BC上.其余两个顶点H、G分别在边AB、AC上.现计划在△AHG上种花,每平方米投资12元;在△BHE、△FCG上都种草,每平方米投资8元;在矩形EFGH上兴建
爱心鱼塘,每平方米投资5元,设矩形的一边FG长为x米.
(1)用含x的式子表示矩形的一边HG的长度;
(2)为了美观,若要将爱心鱼塘建成正方形,这个鱼塘的边长是多少?
(3)当种草的面积与种花的面积相等时,求FG的长;
(4)根据设计要求HG的长度不<FG的长度,求当矩形EFGH的边FG为多少米时,△ABC空地改造总投资最小?最小值为多少?
(2010·大连二模)有一张长比宽多8cm的矩形纸板.如果在纸板的四个角处各剪去一个正方形(如图
所示),可制成高是4cm,容积是512cm
3
的一个无盖长方体纸盒.
(1)求矩形纸板的长和宽;
(2)在操作过程中,由于不小心,矩形纸板被剪掉一角,其直角边长分别为3cm和6cm.如果在剩余的纸板上先裁剪一个各边与原矩形纸板各边平行或重合的矩形,然后再按如图裁剪方式制作高仍是4cm的无盖长方体纸盒,那么你认为如何裁剪才能使制作的长方体纸盒的容积最大,请画出草图,并说明理由.
第一页
上一页
200
201
202
203
204
下一页
最后一页
1198218
1198235
1198247
1198260
1198275
1198294
1198307
1198332
1198343
1198359