数学
在梯形ABCD中,AB∥CD,AB>CD,DE∥BC,交AB于点E,△ADE的周长为16,BE=4,则梯形ABCD的周长是
24
24
.
(2012·苏州)如图,在梯形ABCD中,已知AD∥BC,AB=CD,延长线段CB到E,使BE=AD,连接AE、AC.
(1)求证:△ABE≌△CDA;
(2)若∠DAC=40°,求∠EAC的度数.
(2011·贵港)如图所示,在梯形ABCD中,AD∥BC,AB=AD,∠BAD的平分线AE交BC于点E,连接DE.
(1)求证:四边形ABED是菱形;
(2)若∠ABC=60°,CE=2BE,试判断△CDE的形状,并说明理由.
(2010·宜昌)在梯形ABCD中,AD∥BC,AB=CD,E为AD中点.
(1)求证:△ABE≌△DCE;
(2)若BE平分∠ABC,且AD=10,求AB的长.
(2010·连云港)如果一条直线把一个平面图形的面积分成相等的两部分,我们把这条直线称为这个平面图形的一条面积等分线,例如平行四边形的一条对角线所在的直线就是平行四边形的一条面积等分线.
(1)三角形的中线、高线、角平分线分别所在的直线一定是三角形的面积等分线的有
三角形的中线所在的直线
三角形的中线所在的直线
;
(2)如图,梯形ABCD中,AB∥DC,如果延长DC到E,使CE=AB,连接AE,那么有S
梯形ABCD
=S
△ADE
.请你给出这个结论成立的理由,并过点A作出梯形ABCD的面积等分线(不写作法,保留作图痕迹);
(3)如图,四边形ABCD中,AB与CD不平行,S
△ADC
>S
△ABC
,过点A能否作出四边形ABCD的面积等分线?若能,请画出面积等分线,并给出证明;若不能,说明理由.
(2010·济南)(1)解不等式组:
x+2>-x
-2x≤4
;
(2)如图所示,在梯形ABCD中,BC∥AD,AB=DC,点M是AD的中点.
求证:BM=CM.
(2009·益阳)如图,在梯形ABCD中,AB∥CD,BD⊥AD,BC=CD,∠A=60°,CD=2cm.
(1)求∠CBD的度数;
(2)求下底AB的长.
(2008·益阳)两个全等的直角三角形ABC和DEF重叠在一起,其中∠A=60°,AC=1.固定△ABC不动,将△DEF进行如下操作:
(1)如图,△DEF沿线段AB向右平移(即D点在线段AB内移动),连接DC、CF、FB,四边形CDBF的形状在不断的变化,但它的面积不变化,请求出其面积.
(2)如图,当D点移到AB的中点时,请你猜想四边形CDBF的形状,并说明理由.
(3)如图,△DEF的D点固定在AB的中点,然后绕D点按顺时针方向旋转△DEF,使DF落在AB边上,此时F点恰好与B点重合,连接AE,请你求出sinα的值.
(2008·芜湖)附加题:如图,在梯形ABCD中,AD∥BC,AB=DC=AD,∠C=60°,AE⊥BD于点E,F是CD的中点,DG是梯形ABCD的高.
(1)求证:四边形AEFD是平行四边形;
(2)设AE=x,四边形DEGF的面积为y,求y关于x的函数关系式.
(2008·德阳)如图,已知梯形ABCD中,AD∥BC,AB=DC,对角线AC、BD交于点O.
求证:OA=OD.
第一页
上一页
28
29
30
31
32
下一页
最后一页
1015876
1015877
1015878
1015879
1015880
1015881
1015882
1015883
1015884
1015885