数学
勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=6,AC=8,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为
440
440
.
我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它由四个全等的直角三角形拼接而成.点E,F,G,H分别是AF,BG,CH,DE的中点,点M,N,P,Q分别是HE,EF,FG,GH上的中点,且四边形MNPQ是正方形,已知正方形ABCD的面积为20,则正方形MNPQ的面积是
2
2
.
曾任美国总统的加菲尔德在《新英格兰教育日志》上发表了他提出的一个勾股定理的证明.如图,这就是他用两个全等的直角三角形拼出的图形.上面的图形整体上拼成一个直角梯形.所以它的面积有两种表示方法.既可以表示为
1
2
(a+b)·(a+b)
1
2
(a+b)·(a+b)
,又可以表示为
1
2
(ab×2+c
2
)
1
2
(ab×2+c
2
)
.对比两种表示方法可得
1
2
(a+b)·(a+b)=
1
2
ab×2+c
2
1
2
(a+b)·(a+b)=
1
2
ab×2+c
2
.化简,可得a
2
+b
2
=c
2
.他的这个证明也就成了数学史上的一段佳话.
(2012·济宁)如图,在平面直角坐标系中,有一Rt△ABC,且A(-1,3),B(-3,-1),C(-3,3),已知△A
1
AC
1
是由△ABC旋转得到的.
(1)请写出旋转中心的坐标是
O(0,0)
O(0,0)
,旋转角是
90
90
度;
(2)以(1)中的旋转中心为中心,分别画出△A
1
AC
1
顺时针旋转90°、180°的三角形;
(3)设Rt△ABC两直角边BC=a、AC=b、斜边AB=c,利用变换前后所形成的图案证明勾股定理.
(2009·新疆)如图是用硬纸板做成的四个全等的直角三角形,两
直角边长分别是a,b,斜边长为c和一个边长为c的正方形,请你将它们拼成一个能证明勾股定理的图形.
(1)画出拼成的这个图形的示意图.
(2)证明勾股定理.
(2007·巴中)在学习勾股定理时,我们学会运用图(I)验证它的正确性;图中大正方形的面积可表示为:
(a+b)
2
,也可表示为:c
2
+4·(
1
2
ab),
即(a+b)
2
=c
2
+4·(
1
2
ab)由此推出勾股定理a
2
+b
2
=c
2
,这种根据图形可以极简单地直观推论或验证数学规律和公式的方法,简称“无字证明”.
(1)请你用图(II)(2002年国际数字家大会会标)的面积表达式验证勾股定理(其中四个直角三角形全等);
(2)请你用(III)提供的图形进行组合,用组合图形的面积表达式验证(x+y)
2
=x
2
+2xy+y
2
;
(3)请你自己设计图形的组合,用其面积表达式验证:(x+p)(x+q)=x
2
+px+qx+pq=x
2
+(p+q)x+pq.
(2004·济南)如图(1)是用硬纸板做成的两个全等的直角三角形,两直角边的长分别为a和b,斜边长为c.图(2)是以c为直角边的等腰直角三角形.请你开动脑筋,将它们拼成一个能证明勾股定理的图形.
(1)画出拼成的这个图形的示意图,指出它是什么图形;
(2)用这个图形证明勾股定理;
(3)假设图(1)中的直角三角形有若干个,你能运用图(1)中所给的直角三角形
拼出另一种能证明勾股定理的图形吗?请在图(3)中画出拼后的示意图(无需证明).
(1)如图1是一个重要公式的几何解释,请你写出这个公式;
(2)伽菲尔德(1881年任美国第20届总统)利用(1)中的公式和图2证明了勾股定理(1876年4月1日发表在《新英格兰教育日志》上),现请你尝试证明过程.说明:c
2
=a
2
+b
2
.
美国第二十届总统加菲尔德也曾经给出了勾股定理的一种证明方法,如图,他用两个全等的直角三角形和一个等腰直角三角形拼出了一个直角梯形,请你利用此图形验证勾股定理.
小明学了勾股定理后很高兴,兴冲冲的回家告诉了爸爸:在△ABC中,若∠C=90°,BC=a,AC=b,AB=c,如下图,根据勾股定理,则a
2
+b
2
=c
2
.爸爸笑眯眯地听完后说:很好,你又掌握了一样知识,现在考考你,若不是直角三角形,那勾股定理还成不成立?若成立,请说明理由;若不成立,请你类比勾股定理,试猜想a
2
+b
2
与c
2
的关系,并证明你的结论.〔下图备用)
第一页
上一页
137
138
139
140
141
下一页
最后一页
1064112
1064114
1064116
1064118
1064120
1064122
1064123
1064125
1064128
1064130