试题
题目:
勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=6,AC=8,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为
440
440
.
答案
440
解:如图,延长AB交KL于P,延长AC交LM于Q,
则△ABC≌△PFB≌△QCG,
∴PB=AC=8,CQ=AB=6,
∵图2是由图1放入矩形内得到,
∴IP=8+6+8=22,
DQ=6+8+6=20,
∴矩形KLMJ的面积=22×20=440.
故答案为:440.
考点梳理
考点
分析
点评
勾股定理的证明.
延长AB交KL于P,延长AC交LM于Q,可得△ABC、△PFB、△QCG全等,根据全等三角形对应边相等可得PB=AC,CQ=AB,然后求出IP和DQ的长,再根据矩形的面积公式列式计算即可得解.
本题考查了勾股定理的证明,作辅助线构造出全等三角形并得到矩形的邻边的长是解题的关键,也是本题的难点.
找相似题
如图,“赵爽弦图”由4个全等的直角三角形所围成,在Rt△ABC中,AC=b,BC=a,∠ACB=90°,若图中大正方形的面积为40,小正方形的面积为5,则(a+b)
2
的值为( )
如图,这是我国古代一个数学家构造的“勾股圆方图”(见课本第76页),他第一个利用此图证明了“勾股定理”.这个数学家是( )
利用四个全等的直角三角形可以拼成如图所示的图形,这个图形被称为弦图.观察图形,可以验证( )公式.
我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边长分别为a、b,那么(a-b)
2
的值是( )
(2010·温州)勾股定理有着悠久的历史,它曾引起很多人的兴趣.1955年希腊发行了二枚以勾股图为背景的邮票.所谓勾股图是指以直角三角形的三边为边向外作正方形构成,它可以验证勾股定理.在右图的勾股图中,已知∠ACB=90°,∠BAC=30°,AB=4.作△PQR使得∠R=90°,点H在边QR上,点D,E在边PR上,点G,F在边PQ上,那么△PQR的周长等于
27+13
3
27+13
3
.