数学
已知等边△ABC和三角形内一点P,设点P到△ABC三边的距离分别为h
1
、h
2
、h
3
,△ABC的高为h.
(1)请写出h与h
1
、h
2
、h
3
的关系式,并说明理由;
(2)若点P在等边△ABC的边上,仍有上述关系吗?
(3)若点P在三角形外,仍有上述关系吗?若有,请你证明,若没有,请你写出它们新的关系式,并给予证明.
已知:如图,△ABC是等边三角形,点D在AB上,点E在AC的延长线上,且BD=CE,DE交BC于F,求证:BF=CF+CE.
等边三角形每个角都是60度.
错误
错误
.
等腰三角形是等边三角形.
错误
错误
.
如图,已知△ABC为等边三角形,点D、E分别在BC、AC边上,AD与BE相交于点F,且AE=CD,.
(1)求证:AD=BE;
(2)求∠BFD的度数.
如图,已知在等边三角形ABC的边AC、BC上各取一点P、Q,且AP=CQ,AQ、BP相交于点O,
(1)求证:△ABP≌△ACQ;
(2)求∠BOQ的度数.
如图1,已知点P是线段AB上的动点(P不与A,B重合),分别以AP、PB为边向线段AB的同一侧作正△APC和正△PBD.
(1)求证:△APD≌△CPB.
(2)如图2,若点P固定,将△PBD绕点P按顺时针方向旋转(旋转角小于90°),这种情况“△APD≌△CPB”的结论还成立吗?请说明理由.
(3)如图1,设∠AQC=α,求α的度数.
如图,直线m经过等边△ABC的顶点A,在直线m上取两点D,E,使得∠ADB=60°,∠AEC=60°.通过观察,猜想线段BD,CE与DE之间有怎样的数量关系,并证明你的结论.
以直角三角形ABC的两直角边AB、BC为一边,分别向外作等边三角形△ABE和等边△BCF,连结EF、EC.试说明:
(1)EF=EC;
(2)EB⊥CF.
在等边△ABC的顶点A,C处各有一只蜗牛,它们同时出发,分别以相同的速度由A向B和由C向A爬行,经过t min后,它们分别爬到了D,E处.DC和BE交于点F.
(1)求证:△ACD≌△CBE;
(2)蜗牛在爬行过程中,DC和BE所成的∠BFC的大小有无变化?请证明你的结论.
第一页
上一页
116
117
118
119
120
下一页
最后一页
1174371
1174380
1174385
1174389
1174403
1174413
1174418
1174429
1174434
1174442