(2013·道里区三模)如图,矩形纸片ABCD中,AB=4,AD=8,折叠纸片使点D与点B重合,折痕为EF,则EF的长为( )
(2013·常熟市模拟)如图,△ABC中,∠A=30°,沿BE将此三角形对折,又沿BA′再一次对折,C点落在BE上的C′处,此时
(2013·安徽模拟)如图,在矩形ABCD中,AB=2,AD=4,将矩形ABCD沿直线EF折叠,D到G得位置,C到H得位置,BC交EG于M点.则图中四边形ABME和四边形GHFM的周长和是( )
(2012·路南区一模)如图,将三角形纸片ABC沿DE折叠,使点A落在BC边上的点F处,且DE∥BC,下列结论中一定正确的是( )
(2012·开平区一模)如图,在三角形纸片ABC中,AC=10,AB=6,∠ABC=90°,在BC上取一点E,以AE为折痕折叠,使AC的一部分与AB重合,点C与AB的延长线上的点D重合,则DE的长度为( )
(2012·江岸区模拟)如图,在Rt△ABC中,∠A=30°,将∠A沿直线DE折叠,点A恰好落在点C处,若BD=1,则斜边AC=( )
(2012·安庆二模)如图,已知矩形纸片ABCD,E是AB边的中点,点G为BC边上的一点,现沿EG将纸片折叠,使点B落在纸片上的点H处,连接AH.若AB=EG,则与∠BEG相等的角的个数为( )
(2011·延平区质检)如图,RT△ABC中,∠ACB=90°,∠A=48°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=( )
(2011·三门峡二模)矩形纸片ABCD中,AB=5,AD=4,将纸片折叠,使点B落在边CD上的B′处,折痕为AE.在折痕AE上存在一点P到边CD的距离与到点B的距离相等,则此相等距离为( )