数学
如图,平面直角坐标系中,点A、B、C在x轴上,点D、E在y 轴上,OA=OD=2,OC=OE=4,2OB=OD,直线AD与经过B、E、C三点的抛物线交于F、G两点,与其对称轴交于M.点P为线段FG上一个动点(与F、G不重合),PQ∥y轴与抛物线交于点Q.
(1)求经过B、E、C三点的抛物线的解析式;
(2)是否存在点P,使得以P、Q、M为顶点的三角形与△AOD相似?若存在,求出满足条件的点P的坐标;若不存在,请说明理由.
如图所示,已知点E、F分别是△ABC中AC、AB边的中点,BE、CF相交于点G,FG=20,求CF的长.
(附加题)工人师傅有两块板材边角料,其中一块是边长60cm的正方形板材;另一块是上底为30cm,下底为120cm,高为60cm的直角梯形板材(如下图①).工人师傅想将这两块板材裁成两块全等的矩形板材,他将两块板材叠放在一起,使梯形的两个直角顶点分别与正方形的两个顶点重合,两块板材的重叠部分为五边形ABCFE围成的区域(如图②).由于受材料纹理限制,要求裁出的矩形要以点B为一个顶点.
(1)利用图②,求FC的长;
(2)如图③,若矩形的一个顶点P在线段EF上,P点到BG的距离为PN,试证明:
PN
NG
=
2
3
;
(3)利用图③,求顶点B所对的顶点P到BC的距离PN为多少时,矩形PMBN的面积最大?最大面积是多少?
如图,点A、B、C、D是直径为AB的⊙O上四个点,C是劣弧BD的中点,AC交BD于点E,AE=2,EC=1
.
(1)求证:△DEC∽△ADC;
(2)试探究四边形ABCD是否是梯形?若是,请你给予证明并求出它的面积;若不是,请说明理由.
如图,AB是⊙O的直径,点C在⊙O上,CD⊥AB,垂足为D,已知CD=4,OD=3,求AC的长.
如图1,已知P为正方形ABCD的对角线AC上一点(不与A、C重合),PE⊥BC于点E,PF⊥CD于点F.
(1)试说明:BP=DP;
(2)如图2,若正方形PECF绕点C按逆时针方向旋转,在旋转过程中是否总有BP=DP?若是,请给予证明;若不是,请画图用反例加以说明;
(3)试选取正方形ABCD的两个顶点,分别与正方形PECF的两个顶点连接,使得到的两条线段在正方形PECF绕点C按逆时针方向旋转的过程中长度始终相等,并证明你的结论;
(4)旋转的过程中AP和DF的长度是否相等?若不等,直接写出AP:DF=
2
:1
2
:1
;
(5)若正方形ABCD的边长是4,正方形PECF的边长是1.把正方形PECF绕点C按逆时针方向旋转
的过程中,△PBD的面积是否存在最大值、最小值?如果存在,试求出最大值、最小值;如果不存在,请说明理由.
如图,AC⊥BC,CD⊥AB,BC⊥DE,若AC=6cm,DE=4cm,求CD之长.
如图,在△ABC中,∠BAC=90°,AB=AC,BE平分,∠ABC,CE⊥BE,垂足为E.
(1)求证:BD·BE=AB·BC;
(2)延长CE、BA交于F,求证:CF=BD.
如图,在正方形ABCD中,P是CD上一动点(点P与C、D不重合),三角板的直角顶点与点P重合,并且一条直角边始终经过点A,另一直角边与BC交于点E.
(1)△ADP与△PCE相似吗?如果相似,请写出证明过程.
(2)当点P位于CD的中点时,求△PCE与△ADP的面积比.
如图,四边形ABDC,四边形CDFE,四边形EFHG都是正方形,
(1)从图中找出一对相似三角形,并说明理由;
(2)试说明∠AFB+∠AHB=45°.
第一页
上一页
114
115
116
117
118
下一页
最后一页
910704
910705
910706
910707
910708
910709
910710
910711
910712
910713