数学
如图①,平面直角坐标系中的·AOBC,∠AOB=60°,OA=8cm,OB=10cm,点P从A点出发沿AC方向,以1cm/s速度向C点运动;点Q从B点同时出发沿BO方向,以3cm/s的速度向原点O运动.其中一个动点到达端点时,另一个动点也随之停止运动.
(1)求出A点和C点的坐标;
(2)如图②,从运动开始,经过多少时间,四边形AOQP是平行四边形;
(3)在点P、Q运动的过程中,四边形AOQP有可能成为直角梯形吗?若能,求出运动时间;若不能,请说明理由.(图③供解题时用)
已知:如图,梯形ABCD中,AD∥BC,∠B=90°,AD=a,BC=b,DC=a+b,且b>a,点M是AB边的中点.
(1)求证:CM⊥DM;
(2)求点M到CD边的距离.(用含a,b的式子表示)
如图,在直角梯形ABCD中,AB⊥BC,AB=AD=3,S
梯形ABCD
=15,求DC的长.
如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,点E是AB边上一点,AE=BC,DE⊥EC,取DC的中点F,连接AF、BF.
(1)求证:AD=BE;
(2)试判断△ABF的形状,并说明理由.
如图,在直角梯形ABCD中,∠B=90°,AD∥BC,且AD=4cm,AB=6cm,DC=10cm.若动点P从A点出发,以每秒4cm的速度沿线段AD、DC向C点运动;动点Q从C点出发以每秒5cm的速度沿CB向B点运动.当Q点到达B点时,动点P、Q同时停止运动.设点P、Q同时出发,并运动了t秒,
(1)这个直角梯形ABCD的面积是多少?
(2)当t为何值时,四边形PQCD成为平行四边形?
(3)是否存在t,使得P点在线段DC上且PQ⊥DC?若存在,求出此时t的值,若不存在,说明理由.
当我们遇到梯形问题时,我们常用分割的方法,将其转化成我们熟悉的图形来解决:
(1)按要求对下列梯形分割(分割线用虚线)
①分割成一个平行四边形和一个三角形; ②分割成一个长方形和两个直角三角形;
(2)如图,已知直角梯形ABCD中,AD∥BC,∠B=90°,AB=4cm,BC=8cm,∠C=45°,请你用适当的方法对梯形分割,利用分割后的图形求AD的长.
如图,∠A=∠B=90°,E是AB上的一点,且AE=BC,∠1=∠2
(1)Rt△ADE与Rt△BEC全等吗?并说明理由;
(2)说明线段AB、AD、BC之间的数量关系,并说明理由;
(3)DE与CE有怎样的关系?并说明理由.
在直角坐标系中,O是原点,A、B、C三点的坐标分别为A(18,0),B(18,8),C(6,8),四边形OABC是梯形,点P、Q同时从原点出发,分别做匀速运动,其中点P沿OA向终点A运动,速度为每秒2个单位,点Q沿OC、CB向终点B运动,速度为每秒3个单位,当这两点有一点到达自己的终点则另一点也停止运动,设从出发起,运动了t秒.
①求直线OC的解析式.
②试写出点Q的坐标,并写出此时t的取值范围.
③从运动开始,梯形被直线PQ分割后的图形中是否存在平行四边形,若存在,求出t的值,若不存在,请说明理由.
④t为何值时,直线PQ把梯形OCBA分成面积为1:7的两部分?
如图,在梯形ABCD中,AD∥BC,∠B=90°,AD=21cm,BC=27cm,点P从点A出发,沿射线AD以3cm/s的速度移动,点Q从点C出发,沿边CB向点B以2cm/s的速度移动,若有一点运动端点时,另一点也随之停止.设运动时间为t,如果P、Q同时出发,求当t为何值时,以P、Q、C、D为顶点的四边形是平行四边形?
如图,AD∥BC,∠A=90°,AD=BE,∠EDC=∠ECD,请回答下列问题:
(1)请说明△AED≌△BCE;
(2)请说明AB=AD+BC;
(3)求出∠EDC的角度.
第一页
上一页
43
44
45
46
47
下一页
最后一页
896319
896320
896321
896322
896323
896324
896325
896326
896327
896328