数学
如图1,用篱笆靠墙围成矩形花圃ABCD,墙可利用的最大长度为15m,一面利用旧墙,其余三面用篱笆围,篱笆总长为24m,设平行于墙的BC边长为xm.
(1)若围成的花圃面积为40m
2
时,求BC的长;
(2)如图2,若计划在花圃中间用一道篱笆隔成两个小矩形,且围成的花圃面积为50m
2
,请你判断能否成功围成花圃,如果能,求BC的长?如果不能,请说明理由;
(3)如图3,若计划在花圃中间用n道篱笆隔成小矩形,且当这些小矩形为正方形时,请列出x、n满足的关系式
24-x
n+2
=
x
n+1
24-x
n+2
=
x
n+1
.
如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A沿AB向点B以1cm/s的速度移动,同时,点Q从点B沿边BC
向点C以2cm/s的速度移动,点P、Q分别到达B、C两点就停止运动、设运动的时间为t(秒).
(1)设△BPQ的面积为S,求S与t之间的函数关系式,并且指出t的取值范围;
(2)几秒后△PBQ的面积等于8cm
2
?
(3)当t为何值时,△DPQ是等腰三角形?
如图,矩形ABCD的两条对称轴为EF、MN,其中E、F、M、N、分别在边AB、CD、AD、BC上,连接ME、EN、NF、FM.试问:四边形MENF是什么样的图形呢?(请运用“中位线的性质”说明)
已知:矩形ABCD中,对角线AC与BD交于点O,CE平分∠BCD,交AB于点E,∠OCE=15°,求∠BEO的度数.
如图,长方形ABCD中,AB=12cm,BC=6cm,点P沿AB边从点A开始以2cm/s的速度向点B移动,点Q沿DA边从点D开始以1cm/s的速度向点A移动;如果P、Q同时出发,用t(s)表示移动时间(0≤t≤6).
(1)直接写出AQ、PB的长(用t的式子表示)
(2)当t为何值时,△APQ是等腰直角三角形?
(3)求四边形APCQ的面积,并写出一个与计算结果有关的结论.
如图,长方形ABCD中,AD=5,AC=13,点E、F将AC三等分,则△BEF的面积是:
20
20
.
如图,已知矩形ABCD中,AB=2cm,BD=4cm,AE⊥BD,E是垂足.
(1)△ABO是什么三角形?请说明理由;
(2)求AC、BE的长.
在长方形纸片ABCD中,AD=4cm,AB=10cm,按如图方式折叠,使点B与点D重合,折痕为EF,求:
(1)DE的长?
(2)△DEF的面积?
已知:如图,在矩形ABCD中,E,F分别是边BC,AB上的点,且EF=ED,EF⊥ED.
(1)求证:BE=CD;
(2)若AB=4,AD=7,求△EFD的周长.
如图,在矩形ABCD中,点M在BC上,DM=DA,AE⊥DM,垂足为E.
求证:(1)DE=MC;(2)AM平分∠BAE.
第一页
上一页
16
17
18
19
20
下一页
最后一页
897634
897635
897636
897637
897638
897639
897640
897641
897642
897643