数学
(2007·新疆)如图是一个边长为1的正方形组成的网络,△ABC与△A
1
B
1
C
1
都是格点三角形(顶点在网格交点处),并且△ABC∽△A
1
B
1
C
1
,则△ABC与△A
1
B
1
C
1
的相似比是
2
:1
2
:1
.
如图,△ABC中∠ACB=90°,点D在CA上,使得CD=1,AD=3,并且∠BDC=3∠BAC,求BC的长.
(2010·永嘉县一模)图(a)、图(b)、图(c)是三张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1.请在图(a)、图(b)、图(c)中,分别画出符合要求的图形,所画图形各顶点必须与方格纸中的小正方形顶点重合.
(1)画一个底边为4,面积为8的等腰三角形;
(2)画一个面积为10的等腰直角三角形;
(3)画一个一边长为2
2
,面积为6的等腰三角形.
(2010·吴江市模拟)如图,在Rt△ABC中,∠ACB=90°,AC<BC,D为AB的中点,DE交AC于点E,DF交BC于点F,且DE⊥DF,过A作AG∥BC交FD的延长线于点G.
(1)求证:AG=BF;
(2)若AE=9,BF=18,求线段EF的长.
(2010·奉贤区一模)如图,已知:在Rt△ABC中,∠ACB=90°,AC=BC=4,M是边AB的中点,E、G分别是边AC、BC上的一点,∠EMG=45°,AC与MG的延长线相交于点F.
(1)在不添加字母和线段的情况下写出图中一定相似的三角形,并证明其中的一对;
(2)连接结EG,当AE=3时,求EG的长.
文文和彬彬在完成作业,“如图在△ABC中,AB=AC=10,BC=8.画出中线AD并求中线AD的长.”时她们对各自所作的中线AD描述如图:
文文:“过点A作BC的垂线AD,垂足为D,AD就是△ABC的中线”;
彬彬:“作△ABC的角平分线AD,AD就是△ABC的中线”.那么:
(1)上述作法你认为是两位同学的作法谁的较好?
(2)请你根据中线作法帮她求出AD的长?
如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点就做格点,以格点为顶点分别按下列要求画三角形;
(1)使三角形的三边长分别为2,3,
13
,(在图①中画出一个即可);
(2)使三角形为钝角三角形且面积为4(在图②中画出一个即可),并计算你所画三角
形的三边的长.
在Rt△ABC中,∠C=90°,AC=20cm,BC=15cm.现有动点P从点A出发,沿AC向点C方向运动,动点Q从点C出发,沿线段CB也向点B方向运动.如果点P的速度是4cm/秒,点Q的速度是2cm/秒,它们同时出发,当有一点到达所在线段的端点时,就停止运动,设运动的时间为t秒.
求:(1)用含t的代数式表示Rt△CPQ的面积S;
(2)当t=3秒时,P、Q两点之间的距离是多少?
(3)当t为多少秒时,以点C、P、Q为顶点的三角形与△ABC相似?
阅读下面的情景对话,然后解答问题:
(1)根据“奇异三角形”的定义,请你判断小华提出的命题:“等边三角形一定是奇异三角形”是真命题还是假命题?(直接给出结论,不必证明)
(2)在Rt△ABC中,∠ACB=90°,AB=c,AC=b,BC=a,且b>a,若Rt△ABC是奇异三角形,求a:b:c.
已知:在△ABC中,AB=13,AC=15,AD为BC边的高,且AD=12,求△ABC的面积.
第一页
上一页
62
63
64
65
66
下一页
最后一页
576413
576414
576415
576416
576417
576418
576419
576420
576421
576422