数学
(2008·白银)附加题:由直角三角形边角关系,可将三角形面积公式变形,得S
△ABC
=
1
2
bc·sin∠A①,即三角形的面积等于两边之长与夹角正弦之积的一半.
如图,在△ABC中,CD⊥AB于D,∠ACD=α,∠DCB=β∵S
△ABC
=S
△ADC
+S
△BDC
,由公式①,得
1
2
AC·BC·sin(α+β)=
1
2
AC·CD·sinα+
1
2
BC·CD·sinβ,即AC·BC·sin(α+β)=AC·CD·sinα+BC·CD·sinβ②
你能利用直角三角形边角关系,消去②中的AC、BC、CD吗?不能,说明理由;能,写出解决过程.
(2007·新疆)在锐角△ABC中,∠A,∠B,∠C的对边分别是a,b,c.如图所示,过C作CD⊥AB于D,则co
sA=
AD
b
,
即AD=bcosA.
∴BD=c-AD=c-bcosA
在Rt△ADC和Rt△BDC中有CD
2
=AC
2
-AD
2
=BC
2
-BD
2
∴b
2
-b
2
cos
2
A=a
2
-(c-bcosA)
2
整理得:a
2
=b
2
+c
2
-2bccosA
同理可得:b
2
=a
2
+c
2
-2accosB
c
2
=a
2
+b
2
-2abcosC
这个结论就是著名的余弦定理,在以上三个等式中有六个元素a,b,c,∠A,∠B,∠C,若已知其中的任意三个元素,可求出其余的另外三个元素.
如:在锐角△ABC中,已知∠A=60°,b=3,c=6,
则由(1)式可得:a
2
=3
2
+6
2
-2×3×6cos60°=27
∴a=3
3
,∠B,∠C则可由式子(2)、(3)分别求出,在此略.
根据以上阅读理解,请你试着解决如下问题:
已知锐角△ABC的三边a,b,c分别是7,8,9,求∠A,∠B,∠C的度数.(保留整数)
(2007·韶关)如图,AB是半⊙O的直径,弦AC与AB成30°的角,AC=CD.
(1)求证:CD是半⊙O的切线;
(2)若OA=2,求AC的长.
(2007·陕西)如图,⊙O的半径均为R.
(1)请在图①中画出弦AB,CD,使图①为轴对称图形而不是中心对称图形;请在图②中画出弦AB,CD,使图②仍为中心对称图形;
(2)如图③,在⊙O中,AB=CD=m(0<m<2R),且AB与CD交于点E,夹角为锐角α.求四边形ACBD的面积(用含m,α的式子表示);
(3)若线段AB,CD是⊙O的两条弦,且AB=CD=
2
R,你认为在以点A,B,C,D为顶点的四边形中,是否存在面积最大的四边形?请利用图④说明理由.
(2007·乐山)从甲、乙两题中选做一题即可.如果两题都做,只以甲题计分.
题甲:如图,反比例函数
y=
k
x
的图象与一次函数y=mx+b的图象交于A(1,3),B(n,-1)两点.
(1)求反比例函数与一次函数的解析式;
(2)根据图象回答:当x取何值时,反比例函数的值大于一次函数的值.
题乙:如图,在矩形ABCD中,AB=4,AD=10.直角尺的直角顶点P在AD上滑动时(点P与A,D不重合),一直角边经过点C,另一直角边AB交于点E.我们知道,结论“Rt△AEP∽Rt△DPC”成立.
(1)当∠CPD=30°时,求AE的长;
(2)是否存在这样的点P,使△DPC的周长等于△AEP周长的2倍?若存在,求出DP的长;若不存在,请说
明理由.
我选做的是
.
(2007·济宁)如图,AB为⊙O的直径,弦CD⊥AB于点M,过点B作BE∥CD,交AC的延长线于点E,连接BC.
(1)求证:BE为⊙O的切线;
(2)如果CD=6,tan∠BCD=
1
2
,求⊙O的直径.
(2007·河南)请你画出一个以BC为底边的等腰△ABC,使底边上的高AD=BC.
(1)求tan B和sinB的值;
(2)在你所画的等腰△ABC中,假设底边BC=5米,求腰上的高BE.
(2007·贵港)如图,已知AD是⊙O的切线,切点为D,AC经过圆心O,交⊙O于B,C两点,弦DE⊥AC,垂足
为F,∠A=30°.
(1)求∠BED的度数;
(2)△DCE是否是等边三角形?请说明理由;
(3)若⊙O的半径R=2,试求CE的长.
(2006·重庆)如图,在梯形ABCD中,AB∥CD,∠BCD=90°,且AB=1,BC=2,tan∠ADC=2.
(1)求证:DC=BC;
(2)E是梯形内一点,F是梯形外一点,且∠EDC=∠FBC,DE=BF,试判断△ECF的形状,并证明你的结论;
(3)在(2)的条件下,当BE:CE=1:2,∠BEC=135°时,求sin∠BFE的值.
(2006·盐城)如图所示,已知:在△ABC中,∠A=60°,∠B=45°,AB=8.
求:△ABC的面积.(结果可保留根号)
第一页
上一页
221
222
223
224
225
下一页
最后一页
181575
181578
181580
181582
181583
181585
181587
181589
181591
181593