数学
(2010·珠海)如图,⊙O的半径等于1,弦AB和半径OC互相平分于点M.求扇形OACB的面积(结果保留π).
(2010·泰安)如图,△ABC是等腰三角形,AB=AC,以AC为直径的⊙O与BC交于点D,DE⊥AB,垂足为E,ED的延长线与AC的延长线交于点F.
(1)求证:DE是⊙O的切线;
(2)若⊙O的半径为2,BE=1,求cosA的值.
(2010·泉州)我们容易发现:反比例函数的图象是一个中心对称图形.你可以利用这一结论解决问题.如图,在同一直角坐标系中,正比例函数的图象可以看作是:将x轴所在的直线绕着原点O逆时针旋转α度角后的图形.若它与反比例函数
y=
3
x
的图象分别交于第一、三象限的点B,D,已知点A(-m,O)、C(m,0).
(1)直接判断并填写:不论α取何值,四边形ABCD的形状一定是
平行四边形
平行四边形
;
(2)①当点B为(p,1)时,四边形ABCD是矩形,试求p,α,和m的值;
②观察猜想:对①中的m值,能使四边形ABCD为矩形的点B共有几个?(不必说理)
(3)试探究:四边形ABCD能不能是菱形?若能,直接写出B点的坐标,若不能,说明理由.
(2010·盘锦)如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O交AC边于点D,过点D的切线交BC边于点E.
(1)求证:点E是BC边的中点;
(2)连接OC交DE于点F,若CF=OF,求cosA的值.
(2010·贺州)如图所示,OM是一堵高为2.5米的围墙截面的高,小明在围墙内投篮,篮球从点A处投出,却投到了篮球框外,正好打在了斜靠在围墙上的一根竹竿CD的点B处,篮球经过的路线是二次函数y=ax
2
+bx+4图象的一部分.现以O为原点,垂直于OM的水平线为x轴,OM所在的直线为y轴,建立如图所示的平面直角坐标系,如果篮球不被竹竿挡住,篮球将通过围墙外的点E,点E的坐标为(-3,
7
2
),点B和点E关于此二次函数图象的对称轴对称,若tan∠OCM=1.(围墙的厚度忽略不计,围墙内外水平面高度一样)
(1)求竹竿CD所在的直线的解析式;
(2)求点B的坐标;
(3)在围墙外距围墙底部O点5.5米处有一个大池塘,如果篮球投出后不被竹竿挡住,篮球会不会直接落入池塘?请说明理由.
(2009·湘潭)如图,AB是⊙O的直径,CD是弦,CD⊥AB于点E,
(1)求证:△ACE∽△CBE;
(2)若AB=8,设OE=x(0<x<4),CE
2
=y,请求出y关于x的函数解析式;
(3)探究:当x为何值时,tan∠D=
3
3
.
(2009·梧州)如图所示,△ABC内接于⊙O,AB是⊙O的直径,点D在⊙O上,过点C的切线交AD的延长线于点E,且
AE⊥CE,连接CD.
(1)求证:DC=BC;
(2)若AB=5,AC=4,求tan∠DCE的值.
(2008·肇庆)在Rt△ABC中,∠C=90°,a=3,c=5,求sinA和tanA的值.
sinα表示的是( )
如图,点P(3,4)是∠α的边OA上的一点,则tanα=( )
第一页
上一页
40
41
42
43
44
下一页
最后一页
174206
174207
174208
174209
174210
174211
174212
174213
174214
174215