试题

题目:
青果学院(2010·珠海)如图,⊙O的半径等于1,弦AB和半径OC互相平分于点M.求扇形OACB的面积(结果保留π).
答案
解:∵弦AB和半径OC互相平分,
∴OC⊥AB,
OM=MC=
1
2
OC=
1
2
OA.
在Rt△OAM中,sinA=
OM
OA
=
1
2

∴∠A=30°.
又∵OA=OB,
∴∠B=∠A=30°,
∴∠AOB=120°.
∴S扇形=
120·π·1
360
=
π
3

解:∵弦AB和半径OC互相平分,
∴OC⊥AB,
OM=MC=
1
2
OC=
1
2
OA.
在Rt△OAM中,sinA=
OM
OA
=
1
2

∴∠A=30°.
又∵OA=OB,
∴∠B=∠A=30°,
∴∠AOB=120°.
∴S扇形=
120·π·1
360
=
π
3
考点梳理
扇形面积的计算;勾股定理;垂径定理;锐角三角函数的定义.
要求扇形的面积,关键是求得扇形所在的圆心角的度数.根据垂径定理的推论得到直角三角形OAM,再进一步利用解直角三角形的知识求得角的度数即可.
综合运用了垂径定理的推论、锐角三角函数、以及扇形的面积公式.
找相似题