试题
题目:
(2010·珠海)如图,⊙O的半径等于1,弦AB和半径OC互相平分于点M.求扇形OACB的面积(结果保留π).
答案
解:∵弦AB和半径OC互相平分,
∴OC⊥AB,
OM=MC=
1
2
OC=
1
2
OA.
在Rt△OAM中,sinA=
OM
OA
=
1
2
,
∴∠A=30°.
又∵OA=OB,
∴∠B=∠A=30°,
∴∠AOB=120°.
∴S
扇形
=
120·π·1
360
=
π
3
.
解:∵弦AB和半径OC互相平分,
∴OC⊥AB,
OM=MC=
1
2
OC=
1
2
OA.
在Rt△OAM中,sinA=
OM
OA
=
1
2
,
∴∠A=30°.
又∵OA=OB,
∴∠B=∠A=30°,
∴∠AOB=120°.
∴S
扇形
=
120·π·1
360
=
π
3
.
考点梳理
考点
分析
点评
扇形面积的计算;勾股定理;垂径定理;锐角三角函数的定义.
要求扇形的面积,关键是求得扇形所在的圆心角的度数.根据垂径定理的推论得到直角三角形OAM,再进一步利用解直角三角形的知识求得角的度数即可.
综合运用了垂径定理的推论、锐角三角函数、以及扇形的面积公式.
找相似题
(2013·昭通)如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为( )
(2013·温州)如图,在△ABC中,∠C=90°,AB=5,BC=3,则sinA的值是( )
(2013·天水)如图,已知⊙O的半径为1,锐角△ABC内接于⊙O,BD⊥AC于点D,OM⊥AB于点M,则sin∠CBD的值等于( )
(2013·平凉)如图,⊙O的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O与∠α的两边相切,图中阴影部分的面积S关于⊙O的半径r(r>0)变化的函数图象大致是( )
(2013·济南)已知直线l
1
∥l
2
∥l
3
∥l
4
,相邻的两条平行直线间的距离均为h,矩形ABCD的四个顶点分别在这四条直线上,放置方式如图所示,AB=4,BC=6,则tanα的值等于( )