数学
有一个抛物线形的拱形桥洞,桥面离水面的距离为5.6米,桥洞离水面的最大高度为4m,跨度为10m,如图所示,把它的图形放在直角坐标系中.
(1)求这条抛物线所对应的函数关系式.
(2)如图,在对称轴右边1m处,桥洞离桥面的高是多少?
图1是棱长为a的小正方体,图2、图3由这样的小正方体摆放而成.按照这样的方法继续摆放,由上而下分别叫第一层、第二层、…第n层,第n层的小正方体的个数为s.解答下列问题:
(1)按照要求填表:
n
1
2
3
4
…
S
1
3
6
…
(2)写出当n=10时,s=
55
55
;
(3)根据上表中的数据,把s作为纵坐标,n作为横坐标,在平面直角坐标系中描出相应的各点;
(4)合情猜想符合这图形的函数解析式,求出该函数的解析式,并验证这些点的坐标是否满足函数解析式.
如图是抛物线拱桥,已知水位在AB位置时,水面宽
4
6
m
,水位上升3m,达到警戒线CD,这时水面宽
4
3
m
.若洪水到来时,水位以每小时0.25m的速度上升,求水过警戒线后几小时淹到拱桥顶?
有一根直尺的短边长2cm,长边长10cm,还有一块锐角为45°的直角三角形纸板,其中直角三角形纸板的斜边长为12cm.按图-1的方式将直尺的短边DE放置在与直角三角形纸板的斜边AB上,且点D与点A重合.若直尺沿射线AB方向平行移动,如图-2,设平移的长度为x(cm),直尺和三角形纸板的重叠部分(图中阴影部分)的面积为S (cm
2
).
(1)当x=0时,S=
2
2
;当x=10时,S=
2
2
;
(2)当0<x≤4时,如图-2,求S与x的函数关系式;
(3)当6<x<10时,求S与x的函数关系式;
(4)请你作出推测:当x为何值时,阴影部分的面积最大?并写出最大值.
某医药研究所进行某一治疗病毒新药的开发,经过大量的服用试验后知,成年人按规定的剂量服用后,每毫升血液中含药量y微克(1微克=10
-3
毫克)随时间x小时的变化规律与某一个二次函数y=ax
2
+bx+c(a≠0)相吻合,并测得服用时(即时间为0时)每毫升血液中含药量为0微克;服用后2小时每毫升血液中含药量为6微克;服用后3小时,每毫升血液中含药量为7.5微克.
(1)试求出含药量y(微克)与服药时间x(小时)的函数表达式,并画出0≤x≤8内的函数图象的示意图;
(2)求服药后几小时,才能使每毫升血液中含药量最大并求出血液中的最大含药量;
(3)结合图象说明一次服药后的有效时间是多少小时?(有效时间为血液中含药量不为0的总时间)
某汽车品牌推出一款SUV车型,公司指导销售价为20万元/辆.但由于产品市场反应良好,供不应求,多年来该汽车品牌经销商及4S店一直采用加价提车的销售模式,即购车花费=指导销售价+加价提车费.通常,一款新车从进入市场,被市场认可,最后被新产品所淘汰的生产销售过程约为10年.据专家估计,此SUV车型在A地1至10年的销售数量p(辆)与年份x满足函数关系式p=100x·(14-x)(1≤x≤10,且x取整数).据以往市场经验,该地区加价提车费y(万元/辆)与年份x(1≤x≤10,且x取整数)满足的函数关系如下表:
年份x
1
2
3
4
5
6
7
8
9
10
加价费y(万元/辆)
3
1.5
1
0.75
0.6
0.5
0.5
0.5
0.5
0.5
(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,求出y与x之间的函数关系多;
(2)求该车型1至10年内,在A地的销售额W(万元)与x(年)之间的函数关系式,并求出哪年的销售额最大,且最大销售额是多少万元?
(3)天有不测风云,第6年国际原油价格上涨,影响消费者的购买需求,该SUV车型出现较大库存.为扭转局面,应对危机,公司决定第7年起将指导销售价在原有基础上减少0.5a%,A地经销商及4S店也推出提车加价费打八折的活动,结果当年A地的销售数量比预期提高2a%,从而实现了A地第7年107800万元的销售额.请你参考以下数据,估算出整数a的值(0<a<10).(71.4
2
≈5097.96,71.5
2
≈5112.25,71.6
2
≈5126.56,71.7
2
≈5140.89)
如图所示,公园要建造圆形的喷水池,水池中央垂直于水面处安装一个柱子OA,O恰在水面中心,OA=1.25m,由柱子顶端A处喷头向外喷水,水流在各个方向沿形状相同的抛物线落下,为使水流形状较为漂亮,要求设计成水流在OA距离为1m处达到距水面最大高度2.25m.
(1)若不计其他因素,那么水池的半径至少要多少米,才能使喷出的水流不能落到池外?
(2)若水流喷出的抛物线形状与(1)相同,水池的半径为3.5m,要使水流不落到池外,此时水流最大高度应达多少米?
某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历从亏损到盈利的过程,如下图的二次函数图象(部分)刻画了该公司年初以来累积利润y(万元)与销售
时间x(月)之间的关系(即前x个月的利润之和y与x之间的关系).
(1)根据图上信息,求累积利润y(万元)与销售时间x(月)的函数关系式;
(2)求截止到几月末公司累积利润可达到30万元?
(3)求第8个月公司所获利润是多少万元?
某瓜果基地市场部为指导该基地某种蔬菜的生产销售,在对历年市场行情和生产情况进行调查的基础上,对今年这种蔬菜上市后的市场售价和生产成本进行了预测,提供了两个方面的信息,如图所示.注:两图中的每个实心点所对应的纵坐标分别指相应月份的售价和成本,生产成本6月份最低,图甲的图象是线段,图乙的图象是抛物线.
请你根据图象提供的信息说明:
(1)在3月份出售这种蔬菜,每千克的收益是多少元?(收益=售价-成本)
(2)哪个月出售这种蔬菜,每千克的收益最大?说明理由;
(3)已知市场部销售该种蔬菜,4、5两个月的总收益为48万元,且5月份的销量比4月份的销量多2万公斤,求4、5两个月销量各多少万公斤?
某公司研制出一种新型科技产品,每件产品的成本为2400元.在该产品的试销期间,为促销,公司决定:商家一次购买这种新型产品不超过10件时,每件按3000元销售;若一次购买该种产品超过10件时,每多购买一件,所购买的全部产品的销售单价均降低10元,但销售单价均不低于2600元;且商家一次性购买该产品不能超过60件.
(1)商家一次购买这种产品多少件时,销售单价恰好为2600元?
(2)设商家一次购买这种产品x件,开发公司所获的利润为y元.在公司规定范围内,商家购买多少件时,公司可获得最大利润?最大利润是多少?
(3)某商家一次购买这种产品a件,以每件3200元的价格全部售出,共获利24750元(不计其它成本),请求出产品件数a的值.
第一页
上一页
68
69
70
71
72
下一页
最后一页
166962
166963
166964
166965
166966
166967
166968
166969
166970
166971