数学
配方法可以用来解一元二次方程,还可以用它来解决很多问题.
因为2x
2
≥0,所以2x
2
+1就有个最小值1,即2x
2
+1≥1,只有当x=0时,才能得到这个式子的最小值1.同样,因为-2x
2
≤0,所以-2x
2
+1有最大值1,即-2x
2
+1≤1,只有在x=0时,才能得到这个式子的最大值1.
①当x=
时,代数式3(x-1)
2
+3有最
(填写大或小)值为
;
②当x=
时,代数式-3x
2
+6x+1有最
(填写大或小)值为
;
③矩形花园的一面靠墙,另外三面用栅栏围成.
(1)若栅栏的总长度是12m,当花园与墙相邻的两边的边长x为多少时,花园的面积y最大?最大面积是多少?
(2)若栅栏的总长度为am,那么边长x为多少时,花园的面积y最大?最
大面积又是多少?
某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件,经调查这种商品每降低1元,其销量可增加10件.
①求商场原来一天可获利润多少元?
②设后来该商品每件降价x元,一天可获利润y元.
1)若经营该商品一天要获利2160元,则每件商品应降价多少元?
2)当售价为多少时,获利最大并求最大值?
901班小华的爸爸在国际商贸城开专卖店专销某种品牌的计算器,进价12元∕只,售价20元∕只.为了促销,专卖店决定凡是买10只以上的,每多买一只,售价就降低0.10元(例如:某人买20只计算器,于是每只降价0.10×(20-10)=1元,就可以按19元∕只的价格购买),但是最低价为16元∕只.
(1)顾客一次至少买多少只,才能以最低价购买?
(2)写出当一次购买x只时(x>10),利润y(元)与购买量x(只)之间的函数关系式.
(3)星期天,小华来到专卖店勤工俭学,上午做成了两笔生意,一是向顾客甲卖了46只,二是向顾客乙卖了50只,记账时小华发现卖50只反而比卖46只赚的钱少.为了使每次卖得越多赚钱越多,在其他促销条件不变的情况下,最低价16元∕只至少要提高到多少?为什么?
某精品水果超市销售一种进口水果A,从去年1至7月,这种水果的进价一路攀升,每千克A的进价y
1
与月份x(1≤x≤7,且x为整数),之间的函数关系式如下表:
月份x
1
2
3
4
5
6
7
y
1
(元/千克)
50
60
70
80
90
100
110
随着我国对一些国家进出口关税的调整,该水果的进价涨势趋缓,在8至12月份每千克水果A的进价y
2
与月份x(8≤x≤12,且x为整数)之间存在如下图所示的变化趋势.
(1)请观察表格和图象,用所学过的一次函数、反比例函数、二次函数的有关知识分别写出y
1
与x和y
2
与x的函数关系式.
(2)若去年该水果的售价为每千克180元,且销售该水果每月必须支出(除进价外)的固定支出为300元,已知该水果在1月至7月的销量p
1
(千克)与月份x满足:p
1
=10x+80;8月至12月的销量p
2
(千克)与月份x满足:p
2
=-10x+250;则该水果在第几月销售时,可使该月所获得的利润最大?并求出此时的最大利润.
(3)今年1月到6月,该进口水果的进价进行调整,每月进价均比去年12月的进价上涨15元,且每月的固定支出(除进价外)增加了15%,已知该进口水果的售价在去年的基础上提高了a%(a<100),与此同时每月的销量均在去年12月的基础上减少了0.2a%,这样销售下去要使今年1至6月的总利润为68130元,试求出a的值.(保留两个有效数字)(参考数据:23
2
=529,24
2
=576,25
2
=625,26
2
=676)
“不览夜景,未到重庆.”乘游船夜游两江,犹如在星河中畅游,是一个近距离认识重庆的最佳窗口.“两江号”游轮经过核算,每位游客的接待成本为30元.根据市场调查,同一时间段里,票价为40元时,每晚将售出船票600张,而票价每涨1元,就会少售出10张船票.
(1)若该游轮每晚获得10000元利润的同时,适当控制游客人数,保持应有的服务水准,则票价应定为多少元?
(2)春节期间,工商管理部门规定游轮船票单价不能低于44元,同时该游轮为提高市场占有率,决定每晚售出船票数量不少于540张,则票价应定为多少元,才能使每晚获得的利润最多?
如图,某隧道口的横截面是抛物线形,已知路宽AB为6米,最高点离地面的距离OC为5米.以最高点O为坐标原点,抛物线的对称轴为y轴,1米为数轴的单位长度,建立平面直角坐标系.求:
(1)以这一部分抛物线为图象的函数解析式,并写出x的取值范围.
(2)有一辆宽2米,高2.5米的农用货车(货物最高处与地面AB的距离)能否通过此隧道?
(3)如果该隧道内设双行道,为了安全起见,在隧道正中间设有0.2m宽的隔离带,则该农用货车还能通过隧道吗?
某商店经营一种水产品,成本为每千克40元的水产品,据市场分析,若按每千克50元销售,一个月能售出500千克;销售价每涨1元,月销售量就减少10千克,针对这种水产品的销售情况,销售单价定为多少元时,获得的利润最多?
某农户进行某种水产品的养殖和销售,对历年市场行情和水产品养殖情况进行了调查.调查发现这种水产品的每千克售价y(元)与销售月份x(月)满足关系式y=-2x+38(1≤x≤12,x取正整数),而其每千克成本p(元)与销售月份x(月)满足的函数关系如图所示.
(1)试确定p与销售月份x的函数关系式;
(2)“五·一”节之前,几月份出售这种水产品每千克的利润最大?最大利润是多少?
(3)若第九月份的销售量要在第八月份的基础上增加a%,第九月份的售价要在历年九月份市场行情售价基础上增加0.2a%,才能满足第八月份、第九月份这两个月的销售额持平,求a的值.(保留2个有效数字,参考数据:
37
≈6.082
,
38
≈6.164
)
某商品进价40元/件,当售价为50元/件时,每星期可卖出500件.市场调查反映,如果每件售价每降1元,每星期可多卖出100件,但售价不能低于42元/件,且每星期至少销售800件.设每件降x元(x为正整数),每星期利润为y元.
(1)求y与x的函数关系式并写出自变量x的取值范围;
(2)若某星期利润为5600元,求商品售价.
如图所示,已知矩形ABCD中,CD=2,AD=3,点P是AD上的一个动点(与A、D不重合),过点P作PE⊥CP交直线AB于点E,设PD=x,AE=y,
(1)写出y与x的函数解析式,并指出自变量的取值范围;
(2)如果△PCD的面积是△AEP面积的4倍,求CE的长;
(3)是否存在点P,使△APE沿PE翻折后,点A落在BC上?证明你的结论.
第一页
上一页
38
39
40
41
42
下一页
最后一页
166535
166536
166538
166540
166543
166545
166547
166549
166551
166553