数学
(2006·河北)某公司为一工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.设每吨材料售价为x(元),该经销店的月利润为y(元).
(1)当每吨售价是240元时,计算此时的月销售量;
(2)求出y与x的函数关系式(不要求写出x的取值范围);
(3)该经销店要获得最大月利润,售价应定为每吨多少元?
(4)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.
(2006·恩施州)现有边长为180厘米的正方形铁皮,准备将它设计并制成一个开口的水槽,使水槽能通过的水的流量最大.
某校九年级(2)班数学兴趣小组经讨论得出结论:在水流速度一定的情况下,水槽的横截面面积越大,则通过水槽的水的流量越大.为此,他们对水槽的横截面,进行了如下探索:
(1)方案①:把它折成横截面为矩形的水槽,如图.
若∠ABC=90°,设BC=x厘米,该水槽的横截面面积为y厘米
2
,请你写出y关于x的函数关系式(不必写出x的取值范围),并求出当x取何值时,y的值最大,最大值又是多少?
方案②:把它折成横截面为等腰梯形的水槽,如图.
若∠ABC=1 20°,请你求出该水槽的横截面面积的最大值,并与方案①中的y的最大值比较大小.
(2)假如你是该兴趣小组中的成员,请你再提供一种方案,使你所设计的水槽的横截面
面积更大.画出你设计的草图,标上必要的数据(不要求写出解答过程).
(2006·安徽)某公司年初推出一种高新技术产品,该产品销售的累积利润y(万元)与销售时间x(月)之间的关系(即前x个月的利润总和y与x之间的关系)为y=
1
2
x
2
-2x(x>0).
(1)求出这个函数图象的顶点坐标和对称轴;
(2)请在所给坐标系中,画出这个函数图象的简图;
(3)根据函数图象,你能否判断出公司的这种新产品销售累积利润是从什么时间开始盈利的?
(4)这个公司第6个月所获的利润是多少?
(2005·中原区)小明用科学记算器,结合已经学习的某个函数编了一个计算程序.下表是科学记算器中输入的一些数据和经过该程序计算后计算器显示的相应结果:
输入
-4
-3
-1
0
1
2
3
显示
-5
0
4
3
0
-5
-12
现以输入值作为横坐标,对应的显示值作为纵坐标.
(1)请你在学过的几个常见函数中选择一个,求出这个函数的解析式,使这个函数与小明的计算程序相对应;
(2)画出(1)中所求函数的图象,根据图象写出当计算器中显示值为负数时,计算器的输入值的取值范围.
(2005·扬州)近几年,被称为“园林城市,生态家园”的宿迁旅游业得到长足的发展,到宿迁观光旅游的客人越来越多,“真如禅寺”景点每天都吸引大量的游客前来观光.事实表明,如果游客过多,不利于保护珍贵文物,为了实施可持续发展,兼顾社会效益和经济效益,该景点拟采取浮动门票价格的方法来控制游客人数.已知每张门票原价为40元,现设浮动
门票为每张x元,且40≤x≤70,经市场调研发现一天游览人数y与票价x之间存在着如图所示的一次函数关系.
(1)根据图象,求y与x之间的函数关系式;
(2)设该景点一天的门票收入为W元.
①试用x代数式表示W;
②试问:当门票定为多少时,该景点一天的门票收入最高?最高门票收入是多少?
(2005·遂宁)如图,一个中学生推铅球,铅球在点A处出手,在点B处落地,它的运行路线是一条抛物线,在平面直角坐标系中,这条抛物线的解析式为:y=
-
1
12
x
2
+
2
3
x+
5
3
(1)请用配方法把y=-
1
12
x
2
+
2
3
x+
5
3
化成y=a(x-h)
2
+k的形式.
(2)求出铅球在运行过程中到达最高点时离地面的距离和这个学生推铅球
的成绩.(单位:米)
(2005·南通)某校八年级(1)班共有学生50人,据统计原来每人每年用于购买饮料的平均支出是a元.经测算和市场调查,若该班学生集体改饮某品牌的桶装纯净水,则年总费用由两部分组成,一部分是购买纯净水的费用,另一部分是其它费用780元,其中,纯净水的销售价x(元/桶)与年购买总量y(桶)之间满足如图所示关系.
(1)求y与x的函数关系式;
(2)若该班每年需要纯净水380桶,且a为120时,请你根据提供的信息分析一下:该班学生集体改饮桶装纯净水与个人买饮料,哪一种花钱更少?
(3)当a至少为多少时,该班学生集体改饮桶装纯净水一定合算从计算结果看,你有何感想
?(不超过30字)
(2005·梅州)东海体育用品商场为了推销某一运动服,先做了市场调查,得到数据如下表:
卖出价格x(元/件)
50
51
52
53
…
销售量p(件)
500
490
480
470
…
(1)以x作为点的横坐标,p作为纵坐标,把表中的数据,在图中的直角坐标系中描出相应的点,观察连接各点所得的图形,判断p与x的函数关系式;
(2)如果这种运动服的买入价为每件40元,试求销售利润y(元)与卖出价格
x(元/件)的函数关系式(销售利润=销售收入-买入支出);
(3)在(2)的条件下,当卖出价为多少时,能获得最大利润?
(2005·兰州)有一种计算机控制的线切割机床,它可以自动切割只有直线和抛物线组成的零件,工作时只要先确定零件上各点的坐标及线段与抛物线的关系式作为程序输入计算机即可.今有如图所示的零件需按A·B·C·D·A的路径切割,请按下表将程序编完整.
线段或抛物线
起始坐标
关系式
终点坐标
抛物线APB
线段BC
(1,0)
x=1
(1,-1)
线段CD
(1,-1)
线段AD
(1,0)
(2005·吉林)如图,已知一抛物线形大门,其地面宽度AB=18m.一同学站在门内,在离门脚B点1m远的D处,垂直地面立
起一根1.7m长的木杆,其顶端恰好顶在抛物线形门上C处.根据这些条件,请你求出该大门的高h.
第一页
上一页
36
37
38
39
40
下一页
最后一页
166493
166494
166496
166498
166501
166504
166506
166508
166510
166512