试题

题目:
化简求值:(x+
x
x-2
)÷(x+
1
x-2
),其中x=
2
+1.
答案
解:原式=【
x(x-2)
x-2
+
x
x-2
】÷【
x(x-2)
x-2
+
1
x-2

=
x2-x
x-2
÷
x2-2x+1
x-2

=
x(x-1)
x-2
·
x-2
(x-1)2

=
x
x-1

当x=
2
+1时,原式=
2
+1
2
=
2+
2
2

解:原式=【
x(x-2)
x-2
+
x
x-2
】÷【
x(x-2)
x-2
+
1
x-2

=
x2-x
x-2
÷
x2-2x+1
x-2

=
x(x-1)
x-2
·
x-2
(x-1)2

=
x
x-1

当x=
2
+1时,原式=
2
+1
2
=
2+
2
2
考点梳理
分式的化简求值.
首先把括号内的式子通分相减,然后把除法转化成乘法运算,然后计算乘法即可化简,然后把x的值代入求解即可.
本题考查了分式的混合运算,分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.
找相似题