试题

题目:
青果学院如图,已知菱形ABCD的边长为2,∠B=60°,点P、Q分别是边BC、CD上的动点(不与端点重合),在运动过程中,保持∠PAQ=60°不变.
(1)试说明:△PAQ是等边三角形;
(2)求四边形APCQ的面积;
(3)填空:当BP=
1
1
时,S△PCQ最大.
答案
1

解:(1)在菱形ABCD中,∵∠B=60°,∴△ABC是等边三角形,
∴AB=BC=AC,
∴AC=CD,
∵∠PAQ=60°,
∴∠CAP=∠DAQ,
∴△ACP≌△ADQ,
∴AP=AQ,
∴△PAQ是等边三角形;

(2)∵△ACP≌△ADQ,∴S△ACP=S△ADQ
即S四边形APCQ=S△ACD=
1
2
×2×
3
=
3


(3)∵△PAQ是等边三角形,
∴当AP⊥BC时,三角形APQ的面积最小,则三角形PCQ的面积最大.
此时BP=1,
故答案为1.
考点梳理
菱形的性质;三角形的面积;全等三角形的判定与性质;等边三角形的判定.
(1)利用证明三角形ACP和三角形ADQ全等证AP=AQ,结合角PAQ等于60度,便得△PAQ是等边三角形;
(2)根据三角形ACP和三角形ADQ全等,则四边形APCQ的面积等于三角形ABC或者三角形ACD的面积.
(3)要使三角形PCQ的面积最大,只要等边三角形APQ的面积最小即AP⊥BC时即可.
本题考查了菱形的性质、全等三角形的判定和性质以及等边三角形的判定,有一个角等于60度的等腰三角形是等边三角形.
证明题.
找相似题