试题
题目:
(2010·肇庆)菱形的周长为4,一个内角为60°,则较短的对角线长为( )
A.2
B.
3
C.1
D.
1
2
答案
C
解:如图,∵四边形ABCD为菱形,且周长为4,
∴AB=BC=CD=DA=1,
又∵∠B=60°,
∴△ABC是等边三角形,所以AC=AB=BC=1.
故选C.
考点梳理
考点
分析
点评
专题
菱形的性质;等边三角形的判定.
根据菱形的性质,求出菱形的边长,由菱形的两边和较短的对角线组成的三角形是等边三角形,进而求出较短的对角线长.
本题既考查了菱形的性质,又考查了等边三角形的判定,是菱形性质应用中一道比较典型的题目.
压轴题.
找相似题
一个三角形任意一边上的高都是这边上的中线,则对这个三角形最准确的判断是( )
如图,AC⊥BC,AD=BD,为了使图中的△BCD是等边三角形,再增加一个条件可以是( )
在△ABC中,①若AB=BC=CA,则△ABC为等边三角形;②若∠A=∠B=∠C,则△ABC为等边三角形;③有两个角都是60°的三角形是等边三角形;④一个角为60°的等腰三角形是等边三角形.上述结论中正确的有( )
下面给出的几种三角形,其中不一定是等边三角形的是( )
如图,在△ABC中,∠B=60°,延长BC到D,延长BA到E,使AE=BD,连接CE、DE,使EC=DE,求证:△ABC是等边三角形.