试题
题目:
如图,已知△ABC是等边三角形,D为边AC的中点,AE⊥EC,BD=EC,
(1)说明△BCD与△CAE全等的理由;
(2)请判断△ADE的形状,并说明理由.
答案
解:(1)∵△ABC是等边三角形
∴AB=BC=AC,∠ACB=60°(1分)
又∵D为AC中点
∴BD⊥AC,AD=CD(2分)
又∵AE⊥EC
∴∠BDC=∠AEC=90°(3分)
又∵BD=CE
∴Rt△BDC≌Rt△CEA;(4分)
(2)∵Rt△BDC≌Rt△CEA
∴∠EAC=∠ACB=60°,AE=CD(6分)
又∵D为边AC的中点,
∴AD=CD,
∴AD=AE(7分)
∴△ADE是等边三角形.(8分)
解:(1)∵△ABC是等边三角形
∴AB=BC=AC,∠ACB=60°(1分)
又∵D为AC中点
∴BD⊥AC,AD=CD(2分)
又∵AE⊥EC
∴∠BDC=∠AEC=90°(3分)
又∵BD=CE
∴Rt△BDC≌Rt△CEA;(4分)
(2)∵Rt△BDC≌Rt△CEA
∴∠EAC=∠ACB=60°,AE=CD(6分)
又∵D为边AC的中点,
∴AD=CD,
∴AD=AE(7分)
∴△ADE是等边三角形.(8分)
考点梳理
考点
分析
点评
等边三角形的判定;全等三角形的判定.
(1)首先可由等边三角形的性质得知BD和AC垂直,且D点是AC的中点,又∠BCD=60°,再由直角三角形性质不难推出△BDC和△ACE全等.
(2)由(1)的全等三角形得知∠EAC=60°,便可得△ADE为等边三角形.
本题主要考查了等边三角形和直角三角形的性质,能够活学活用是解题的关键.
找相似题
一个三角形任意一边上的高都是这边上的中线,则对这个三角形最准确的判断是( )
如图,AC⊥BC,AD=BD,为了使图中的△BCD是等边三角形,再增加一个条件可以是( )
在△ABC中,①若AB=BC=CA,则△ABC为等边三角形;②若∠A=∠B=∠C,则△ABC为等边三角形;③有两个角都是60°的三角形是等边三角形;④一个角为60°的等腰三角形是等边三角形.上述结论中正确的有( )
下面给出的几种三角形,其中不一定是等边三角形的是( )
(2010·肇庆)菱形的周长为4,一个内角为60°,则较短的对角线长为( )