题目:
如图,菱形ABCD中,∠ABC=120°,菱形的边长为6,点E、F分别是边AD,CD上的两个动点(E、F与D不重合).

(1)若E、F满足AE=DF.
①求证:△BEF是等边三角形;
②设△BEF面积为S,直接写出S的最大值和最小值.
(2)若E、F满足∠BEF=60°,则△BEF是否仍一定为等边三角形?若是,请给出证明;若不是,请说明理由.
答案
解:(1)①证明:
∵四边形ABCD是菱形,∠ABC=120°
∴∠ADB=∠CDB=∠ABD=∠CBD=60° AD=CD
∴△ABC与△BCD是正三角形
∴BD=BC
∵AE=DF
∴DE=CF
在△BDE与△BFC中
∴△BDE≌△BFC
∴BE=BF,∠EBD=∠CBF
∴∠EBD+∠DBF=∠CBF+∠DBF=60°
∴∠EBF=60°
∴△BEF为等边三角形;
②由①知△BEF为等边三角形,其边长最大值为6,最小值为
3,
所以S的最大值是9
,最小值为
.
(2)△BEF是等边三角形过E作EG∥DB交AB与点G

可得△AEG是等边三角形
∴AE=AG,∠EGB=120°,∠AEG=60°
∴GB=ED∠EGB=∠EDF
∵∠BEF=60°
∴∠GEB+∠DEF=60°
∵∠DFE+∠DEF=60°
∴∠GEB=∠DEF
∴△EGB≌△FDE
∴BE=EF
∴△BEF是等边三角形.
解:(1)①证明:
∵四边形ABCD是菱形,∠ABC=120°
∴∠ADB=∠CDB=∠ABD=∠CBD=60° AD=CD
∴△ABC与△BCD是正三角形
∴BD=BC
∵AE=DF
∴DE=CF
在△BDE与△BFC中
∴△BDE≌△BFC
∴BE=BF,∠EBD=∠CBF
∴∠EBD+∠DBF=∠CBF+∠DBF=60°
∴∠EBF=60°
∴△BEF为等边三角形;
②由①知△BEF为等边三角形,其边长最大值为6,最小值为
3,
所以S的最大值是9
,最小值为
.
(2)△BEF是等边三角形过E作EG∥DB交AB与点G

可得△AEG是等边三角形
∴AE=AG,∠EGB=120°,∠AEG=60°
∴GB=ED∠EGB=∠EDF
∵∠BEF=60°
∴∠GEB+∠DEF=60°
∵∠DFE+∠DEF=60°
∴∠GEB=∠DEF
∴△EGB≌△FDE
∴BE=EF
∴△BEF是等边三角形.