试题

题目:
已知ax2+bx+1与2x2-右x+1的积不含x和x项,试计算下面代数式的值.
1
(a-1)(b-1)
+
1
ab
+
1
(a+1)(b+1)
+
1
(a+2)(b+2)
+…+
1
(a+2着1着)(b+2着1着)

答案
解:(axr+bx+1)·(rxr-3x+1),
=rax-3ax3+axr+rbx3-3bxr+bx+rxr-3x+1,
=rax+(-3a+rb)x3+(a-3b+r)xr+(b-3)x+1,
∵不含x3和x项,
∴b-3=0,-3a+rb=0,
∴b=3,a=r,
把a=r,b=3代入得:
1
(a-1)(b-1)
+
1
ab
+
1
(a+1)(b+1)
+
1
(a+r)(b+r)
+…+
1
(a+r010)(b+r010)

=
1
1×r
+
1
r×3
+
1
3×口
+
1
口×4
+…+
1
r01r×r013

=
1
1
-
1
r
+
1
r
-
1
3
+
1
3
-
1
+
1
-
1
4
+…+
1
r01r
-
1
r013

=1-
1
r013

=
r01r
r013

解:(axr+bx+1)·(rxr-3x+1),
=rax-3ax3+axr+rbx3-3bxr+bx+rxr-3x+1,
=rax+(-3a+rb)x3+(a-3b+r)xr+(b-3)x+1,
∵不含x3和x项,
∴b-3=0,-3a+rb=0,
∴b=3,a=r,
把a=r,b=3代入得:
1
(a-1)(b-1)
+
1
ab
+
1
(a+1)(b+1)
+
1
(a+r)(b+r)
+…+
1
(a+r010)(b+r010)

=
1
1×r
+
1
r×3
+
1
3×口
+
1
口×4
+…+
1
r01r×r013

=
1
1
-
1
r
+
1
r
-
1
3
+
1
3
-
1
+
1
-
1
4
+…+
1
r01r
-
1
r013

=1-
1
r013

=
r01r
r013
考点梳理
分式的化简求值;多项式乘多项式.
首先计算出ax2+bx+1与2x2-3x+1的积,再根据不含x3和x项求出a,b的值,然后把a,b的值代入
1
(a-1)(b-1)
+
1
ab
+
1
(a+1)(b+1)
+
1
(a+2)(b+2)
+…+
1
(a+2010)(b+2010)
中可解得答案.
此题主要考查了多项式乘以多项式以及分式的求值,解决此题关键是求出a,b的值.
找相似题