试题

题目:
已知x2-5x-2014=0,求代数式
(x-2)3-(x-1)2+1
x2-4x+4
÷
2x
2x2-4x
的值.
答案
解:∵x2-5x-2014=0,
∴x2-5x=2014,
∴原式=
(x-2)3-(x-1)2+1
(x-2)2
×
2x(x-2)
2x
=
(x-2)3-(x-1)2+1
x-2

=(x-2)2-
(x-1)2
x-2
+
1
x-2

=(x-2)2-
(x-1)2-1
x-2

=(x-2)2-
x(x-2)
x-2

=(x-2)2-x
=x2-5x+4
=2014+4
=2018;
解:∵x2-5x-2014=0,
∴x2-5x=2014,
∴原式=
(x-2)3-(x-1)2+1
(x-2)2
×
2x(x-2)
2x
=
(x-2)3-(x-1)2+1
x-2

=(x-2)2-
(x-1)2
x-2
+
1
x-2

=(x-2)2-
(x-1)2-1
x-2

=(x-2)2-
x(x-2)
x-2

=(x-2)2-x
=x2-5x+4
=2014+4
=2018;
考点梳理
分式的化简求值.
根据x2-5x-2014=0求出x2-5x=2014,再把要求的式子根据完全平方公式、约分、因式分解进行化简得出原式x2-5x+4,最后把x2-5x=2014代入进行计算即可.
此题考查了分式的化简求值,用到的知识点是完全平方公式、约分、因式分解,关键是把分式化到最简,把x2-5x看做一个整体.
找相似题