试题

题目:
(1)计算:5
4
5
-[2
1
6
+(-4.8)-(-4
5
6
)]
(2)计算:-42-3×22×(
1
3
-1)÷(-1
1
3

(3)已知(x-
1
3
)2+|y+1|=0
,求4x2+2x2y-2(x2y-2xy+2x2)-xy的值.
(4)解方程:y-
y-1
2
=3-
y+2
5

答案
解:(1)原式=5.8-(2
1
6
+4
5
6
-4.8)=5.8-(7-4.8)=5.8-7+4.8=3.6;
(2)原式=-16-3×4×(-
2
3
)×(-
3
4
)=-16-6=-22;
(3)∵(x-
1
3
2+|y+1|=0,∴x-
1
3
=0且y+1=0,
解得:x=
1
3
,y=-1,
则4x2+2x2y-2(x2y-2xy+2x2)-xy=4x2+2x2y-2x2y+4xy-4x2-xy=3xy=3×
1
3
×(-1)=-1;
(4)去分母得:10y-5(y-1)=30-2(y+2),
去括号得:10y-5y+5=30-2y-4,
移项合并得:7y=21,
解得:y=3.
解:(1)原式=5.8-(2
1
6
+4
5
6
-4.8)=5.8-(7-4.8)=5.8-7+4.8=3.6;
(2)原式=-16-3×4×(-
2
3
)×(-
3
4
)=-16-6=-22;
(3)∵(x-
1
3
2+|y+1|=0,∴x-
1
3
=0且y+1=0,
解得:x=
1
3
,y=-1,
则4x2+2x2y-2(x2y-2xy+2x2)-xy=4x2+2x2y-2x2y+4xy-4x2-xy=3xy=3×
1
3
×(-1)=-1;
(4)去分母得:10y-5(y-1)=30-2(y+2),
去括号得:10y-5y+5=30-2y-4,
移项合并得:7y=21,
解得:y=3.
考点梳理
解一元一次方程;非负数的性质:绝对值;非负数的性质:偶次方;有理数的混合运算;整式的加减—化简求值.
(1)原式括号中先利用减去一个数等于加上这个数的相反数将减法运算化为加法运算,计算即可得到结果;
(2)原式先计算乘方运算及括号中的运算,再计算乘除运算,最后算加减运算,即可得到结果;
(3)先根据两非负数之和为0,两非负数分别为0求出x与y的值,原式利用去括号法则去括号后,合并得到最简结果,将x与y的值代入计算,即可求出值;
(4)方程两边都乘以10去分母后,去括号,移项合并,将y的系数化为1,即可求出解.
此题考查了解一元一次方程,整式的混合运算,有理数的混合运算,解一元一次方程的步骤为:去分母,去括号,移项合并,将x系数化为1,求出解.
计算题.
找相似题