试题

题目:
(2010·和县一模)观察下列等式:a1=
1
1×2×3
+
1
2
=
2
1×3
a2=
1
2×3×二
+
1
3
=
3
2×二
a3=
1
3×二×八
+
1
=
3×八

(1)猜想并写出第n个等式;
(2)证明你猜想五正确性.
答案
解:(1)an=
1
n(n+1)(n+2)
+
1
n+1
=
n+1
n(n+2)

 
(2)证明:左边=
1
n(n+1)(n+2)
+
n(n+2)
n(n+1)(n+2)

=
1+n(n+2)
n(n+1)(n+2)
 
=
n2+2n+1
n(n+1)(n+2)
=
(n+1)2
n(n+1)(n+2)
=
n+1
n(n+2)
=右边
1
n(n+1)(n+2)
+
1
n+1
=
n+1
n(n+2)

解:(1)an=
1
n(n+1)(n+2)
+
1
n+1
=
n+1
n(n+2)

 
(2)证明:左边=
1
n(n+1)(n+2)
+
n(n+2)
n(n+1)(n+2)

=
1+n(n+2)
n(n+1)(n+2)
 
=
n2+2n+1
n(n+1)(n+2)
=
(n+1)2
n(n+1)(n+2)
=
n+1
n(n+2)
=右边
1
n(n+1)(n+2)
+
1
n+1
=
n+1
n(n+2)
考点梳理
分式的加减法.
(1)通过观察得出规律后即可写出第n个等式;
(2)先对分式的左边通分,再相加后即可证出猜想的正确性.
此题考查了分式的加减,关键是能通过观察找出规律,并用式子表示出来.
规律型.
找相似题