试题

题目:
先填空后计算:
1
n
- 
1
n+1
=
1
n(n+1)
1
n(n+1)
1
n+1
-
1
n+2
=
1
(n+1)(n+2)
1
(n+1)(n+2)
1
n+2
-
1
n+3
=
1
(n+2)(n+3)
1
(n+2)(n+3)

②计算:
1
n(n+1)
+
1
(n+1)(n+2)
+
1
(n+2)(n+3)
+…+
1
(n+2007)(n+2008)

答案
1
n(n+1)

1
(n+1)(n+2)

1
(n+2)(n+3)

解:①原式=
n+1-n
n(n+1)
=
1
n(n+1)

原式=
n+2-n-1
(n+1)(n+2)
=
1
(n+1)(n+2)

原式=
n+3-n-2
(n+2)(n+3)
=
1
(n+2)(n+3)

②原式=
1
n
- 
1
n+1
+
1
n+1
-
1
n+2
+
1
n+2
-
1
n+3
+…+
1
n+2007
-
1
n+2008

=
1
n
-
1
n+2008

=
n+2008-n
n(n+2008)

=
2008
n(n+2008)
考点梳理
分式的加减法.
①先通分成同分母的分式,再进行加减运算;
②根据题意得出规律:
1
n(n+1)
=
1
n
- 
1
n+1
;将每一项展开,再合并计算即可.
本题考查了分式的加减运算,先找出规律是解决此题的关键.
计算题.
找相似题