试题

题目:
计算:(1)1-
1
x+1
+
2
1-x2

(2) ( xy+y2)÷
x2+2xy+y2
xy
·
x+y
y2

答案
解:(1)原式=
x2-1
(x+1)(x-1)
-
x-1
(x+1)(x-1)
-
2
(x+1)(x-1)
=
x2-1-x+1-2
x2-1
=
x2-x-2
x2-1
=
x-2
x-1

(2)原式=y(x+y)·
xy
(x+y)2
·
x+y
y2
=x.
故答案为
x-2
x-1
、x.
解:(1)原式=
x2-1
(x+1)(x-1)
-
x-1
(x+1)(x-1)
-
2
(x+1)(x-1)
=
x2-1-x+1-2
x2-1
=
x2-x-2
x2-1
=
x-2
x-1

(2)原式=y(x+y)·
xy
(x+y)2
·
x+y
y2
=x.
故答案为
x-2
x-1
、x.
考点梳理
分式的加减法.
(1)先对x2-1分解因式,再通分化简;
(2)先将括号里面的式子因式分解,再把除法转化为乘法运算,然后进行分式的约分化简.
本题主要考查了分式的混合运算,注意:能分解因式的一定要先分解因式,结果必须化为最简.
找相似题