试题
题目:
△ABC和△ABD是有公共边的三角形,如果可以判定两个三角形全等,那么点D的位置是( )
A.是唯一确定的
B.有且只有两种可能
C.有且只有三种可能
D.有无数种可能
答案
B
解:以AB为公共边可得两个点D的位置.
故选B.
考点梳理
考点
分析
点评
专题
轴对称的性质.
根据三角形全等的判定和已知,可确定公共边为AB,故点D的位置也有两种情况.
本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等.
分类讨论.
找相似题
(2013·大连)P是∠AOB内一点,分别作点P关于直线OA、OB的对称点P
1
、P
2
,连接OP
1
、OP
2
,则下列结论正确的是( )
(2007·武汉)如图是一个风筝的图案,它是轴对称图形,量得∠B=30°,则∠E的大小为( )
(2006·泰安)如果在正八边形硬纸板上剪下一个三角形(如图①中的阴影部分),那么图②,图③,图④中的阴影部分,均可由这个三角形通过一次平移、对称或旋转而得到.要得到图②,图③,图④中的阴影部分,依次进行的变换不可行的是( )
(2006·苏州)如图,如果直线m是多边形ABCDE的对称轴,其中∠A=130°,∠B=110°.那么∠BCD的度数等于( )
(2010·鲤城区质检)如图,六边形ABCFED是轴对称图形,CD所在的直线是它的对称轴,若∠ADC+∠BCD=130°,则∠E+∠F的大小是( )