试题
题目:
(2010·郴州)一种千斤顶利用了四边形的不稳定性.如图,其基本形状是一个菱形,中间通过螺杆连接,转动手柄可改变∠ADC的大小(菱形的边长不变),从而改变千斤顶的高度(即A、C之间的距离).若AB=40cm,当∠ADC从60°变为120°时,千斤顶升
高了多少?(
2
=1.414,
3
=1.732
,结果保留整数)
答案
解:连接AC,与BD相交于点O.
∵四边形ABCD是菱形,
∴AC⊥BD,∠ADB=∠CDB,AC=2AO.
当∠ADC=60°时,△ADC是等边三角形.
∴AC=AD=AB=40;
当∠ADC=120°时,∠ADO=60°,
∴AO=AD·sin∠ADO=40×
3
2
=20
3
,
∴AC=40
3
,
因此增加的高度为40
3
-40=40×(
3
-1)≈29(cm).
解:连接AC,与BD相交于点O.
∵四边形ABCD是菱形,
∴AC⊥BD,∠ADB=∠CDB,AC=2AO.
当∠ADC=60°时,△ADC是等边三角形.
∴AC=AD=AB=40;
当∠ADC=120°时,∠ADO=60°,
∴AO=AD·sin∠ADO=40×
3
2
=20
3
,
∴AC=40
3
,
因此增加的高度为40
3
-40=40×(
3
-1)≈29(cm).
考点梳理
考点
分析
点评
专题
解直角三角形的应用;等边三角形的性质;等边三角形的判定.
连接AC,分别求出当∠ADC从60°变为120°两种情况下AC的长,相减即可.
当∠ADC=60°时,△ADC是等边三角形,AC=AB;当∠ADC=120°时,在直角△AOD中,利用三角函数即可求得AC.
菱形的问题,可以通过连接两条对角线,转化为直角三角形求解.
压轴题.
找相似题
(2013·牡丹江)如图,在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM,PN,则下列结论:①PM=PN;②
AM
AB
=
AN
AC
;③△PMN为等边三角形;④当∠ABC=45°时,BN=
2
PC.其中正确的个数是( )
若已知关于x的方程(x-2)(x
2
-4x+m)=0有三个实根.
(1)试求m的取值围;
(2)若这三个实根恰好可以作为一个三角形的三条边的长,求此时m的取值范围.
(3)若这三个实根作成的三角形是等腰三角形,求m值及三角形的面积.
写出下列命题的条件和结论并指出它是真命题还是假命题:
(1)有一个角是60°的等腰三角形是等边三角形;
(2)等腰三角形底边上的高和底边上的中线顶角的平分线互相重合;
(3)各位上的数字和能被3整除的整数能被3整除;
(4)对角线互相垂直平分的四边形是菱形.
已知:如图,菱形ABCD中,∠A=120°,过C分别作AB、AD的垂线,垂足分别为E、F,与对角线BD相交于G、H.
求证:(1)△GBC≌△HDC;(2)△CGH是等边三角形.
Rt△ABC≌Rt△DEF,∠ABC=∠DEF=90°,将△ABC和△DEF重叠放置如图①.
(1)保持△ABC不动,将△DEF绕点E顺时针旋转60°,使DF经过点C,如图②.求证:△BCF是等边三角形;
(2)保持△ABC不动,将△DEF绕点E顺时针旋转90°,如图③,判断AC与DF的位置关系,并说明理由.