试题

题目:
x
y
=
a
b
,求证
x2+a2
x+a
+
y2+b2
y+b
=
(x+y)2+(a+b)2
x+y+a+b

答案
证明:设
x
y
=
a
b
=t,则x=yt,a=bt,
左边=
y2t2+b2t2
yt+bt
+
y2+b2
y+b
=
(y2+b2)(t+1)
y+b

右边=
(yt+y)2+(bt+b)2
yt+y+bt+b
=
(y2+b2)(t+1)2
(y+b)(t+1)
=
(y2+b2)(t+1)
y+b

左边=右边,得证.
证明:设
x
y
=
a
b
=t,则x=yt,a=bt,
左边=
y2t2+b2t2
yt+bt
+
y2+b2
y+b
=
(y2+b2)(t+1)
y+b

右边=
(yt+y)2+(bt+b)2
yt+y+bt+b
=
(y2+b2)(t+1)2
(y+b)(t+1)
=
(y2+b2)(t+1)
y+b

左边=右边,得证.
考点梳理
分式的加减法.
x
y
=
a
b
=t(参数),则x=yt,a=bt,分别代入等式的左右两边化简,证明左边=右边.
本题考查了分式等式的证明方法,根据已知等式的特点,设参数,能使运算简便.
找相似题