二次函数综合题.
(1)由二次函数y=ax2+2ax的图象与x轴负半轴的交点为A,易求得点A的坐标,又由将点A绕坐标原点O顺时针旋转120°后得点B,可得∠BOD=30°,OB=OA=2,然后过点B作BD⊥y轴于点D,即可求得点B的坐标,再代入二次函数的解析式,即可求得a的值;
(2)由△AOB的外接圆的圆心是△AOB的三边的垂直平分线的交点,可设OB的中点为F,过点F作EF⊥OB交AO的垂直平分线于点E,连接OE,确定点E是△AOB外接圆的圆心;然后求得点E的坐标,可证得OE⊥OC,即可判定直线OC与△AOB的外接圆相切.
此题考查了待定系数法求二次函数的解析式、二次函数的性质、三角形的外接圆以及切线的判定.此题难度较大,注意掌握辅助线的作法,注意数形结合思想与方程思想的应用.