题目:

(2008·乌鲁木齐)如图,在平面直角坐标系中,以点C(1,1)为圆心,2为半径作圆,交x轴于A,B两点,开口向下的抛物线经过点A,B,且其顶点P在⊙C上.
(1)求∠ACB的大小;
(2)写出A,B两点的坐标;
(3)试确定此抛物线的解析式;
(4)在该抛物线上是否存在一点D,使线段OP与CD互相平分?若存在,求出点D的坐标;若不存在,请说明理由.
答案

解:(1)作CH⊥x轴,H为垂足,
∵CH=1,半径CB=2,
∵∠BCH=60°,
∴∠ACB=120°.
(2)∵CH=1,半径CB=2
∴HB=
,
故A(1-
,0),B(1+
,0).
(3)由圆与抛物线的对称性可知抛物线的顶点P的坐标为(1,3)
设抛物线解析式y=a(x-1)
2+3,
把点B(1+
,0)代入上式,解得a=-1;
∴y=-x
2+2x+2.
(4)假设存在点D使线段OP与CD互相平分,则四边形OCPD是平行四边形
∴PC∥OD且PC=OD.
∵PC∥y轴,
∴点D在y轴上.
又∵PC=2,
∴OD=2,即D(0,2).
又D(0,2)满足y=-x
2+2x+2,
∴点D在抛物线上
所以存在D(0,2)使线段OP与CD互相平分.

解:(1)作CH⊥x轴,H为垂足,
∵CH=1,半径CB=2,
∵∠BCH=60°,
∴∠ACB=120°.
(2)∵CH=1,半径CB=2
∴HB=
,
故A(1-
,0),B(1+
,0).
(3)由圆与抛物线的对称性可知抛物线的顶点P的坐标为(1,3)
设抛物线解析式y=a(x-1)
2+3,
把点B(1+
,0)代入上式,解得a=-1;
∴y=-x
2+2x+2.
(4)假设存在点D使线段OP与CD互相平分,则四边形OCPD是平行四边形
∴PC∥OD且PC=OD.
∵PC∥y轴,
∴点D在y轴上.
又∵PC=2,
∴OD=2,即D(0,2).
又D(0,2)满足y=-x
2+2x+2,
∴点D在抛物线上
所以存在D(0,2)使线段OP与CD互相平分.