题目:
(2008·荆州)已知:如图,Rt△AOB的两直角边OA、OB分别在x轴的正半轴和y轴的负半轴上,C为OA上一点且O

C=OB,抛物线y=(x-2)(x-m)-(p-2)(p-m)(m、p为常数且m+2≥2p>0)经过A、C两点.
(1)用m、p分别表示OA、OC的长;
(2)当m、p满足什么关系时,△AOB的面积最大.
答案
解:(1)令y=0得:(x-2)(x-m)-(p-2)(p-m)=0,
x
2-mx-2x=p
2-pm-2p,
∴(x-p)(x+p)-x(m+2)+p(m+2)=0,
整理得:(x-p)(x-m-2+p)=0,
∴x
1=p,x
2=m+2-p,
∵m+2>2p>0
∴m+2-p>p>0,
∴OA=m+2-p,OC=P.
(2)∵OC=OB,S
△AOB=
OA·OB,
∴S
△AOB=
OA·OB=
P·(m+2-p),
=-
P
2+
(m+2)·P,
∴当p=-
=(m+2)时,S
△AOB最大.
解:(1)令y=0得:(x-2)(x-m)-(p-2)(p-m)=0,
x
2-mx-2x=p
2-pm-2p,
∴(x-p)(x+p)-x(m+2)+p(m+2)=0,
整理得:(x-p)(x-m-2+p)=0,
∴x
1=p,x
2=m+2-p,
∵m+2>2p>0
∴m+2-p>p>0,
∴OA=m+2-p,OC=P.
(2)∵OC=OB,S
△AOB=
OA·OB,
∴S
△AOB=
OA·OB=
P·(m+2-p),
=-
P
2+
(m+2)·P,
∴当p=-
=(m+2)时,S
△AOB最大.