二次函数综合题.
(1)令抛物线中y=0,可得出A、B的坐标.
(2)先根据△OCA∽△OBC,得出OC的长度,设AC=k,则BC=
k,在RT△ABC中,可求出k的值,继而就可得出OA=AC,过点C作CD⊥AB于点D,然后利用解直角三角形的知识,可求出点C的坐标,代入可得出二次函数解析式.
(3)应该有四个符合条件的点:
①以C为圆心,BC为半径作弧,交x轴于一点,这点符合P点要求,此时CP=BC,已知了B、C的坐标,即可求出P点坐标.
②以B为圆心,BC为半径作弧,交x轴于两点,这两点也符合P点要求,此时BC=BP,根据B、C的坐标,不难得出BC的长,将B点坐标向左或向右平移BC个单位即可得出P点坐标.
③作BC的垂直平分线,与x轴的交点也符合P点要求,此时CP=BP,可设出P点坐标,用坐标系两点间距离公式表示出BP和CP的长,即可求出P点坐标.
因此共有4个符合条件的P点.
本题考查了二次函数的知识,其中涉及了数形结合问题,由抛物线求二次函数的解析式,用几何中相似三角形的性质求点的坐标等知识.注意这些知识的综合应用.