试题

题目:
如图,已知抛物线C1:y=a(x-2)2-5的顶点为P,与x轴相交于A、B两点(点A在点B的左边),点A的横坐标是-1.
(1)求P点坐标及a的值;
(2)如图(1),抛物线C2与抛物线C1关于x轴对称,将抛物线C2向左平移,平移后的抛物线记为C3,C3的顶点为M,当点P、M关于点A成中心对称时,求C3的解析式y=a(x-h)2+k;
(3)如图(2),点Q是x轴负半轴上一动点,将抛物线C1绕点Q旋转180°后得到抛物线C4.抛物线C4的顶点为N,与x轴相交于E、F两点(点E在点F的左边),当以点P、N、E为顶点的三角形是直角三角形时,求顶点N的坐标.
青果学院
答案
青果学院解:(1)由抛物线C1:y=a(x-2)2-5得顶点P的坐标为(2,-5);
∵点A(-1,0)在抛物线C1上,
∴a(-3)2-5=0,
解得:a=
5
9


(2)连接PM,作PH⊥x轴于H,作MG⊥x轴于G,
∵点P、M关于点A成中心对称,
∴PM过点A,且PA=MA,
∴△PAH≌△MAG,
∴MG=PH=5,AG=AH=3.
∴顶点M的坐标为(-4,5),
∵抛物线C2与C1关于x轴对称,抛物线C3由C2平移得到,
∴抛物线C3的表达式y=-
5
9
(x+4)2+5


(3)∵抛物线C4由C1绕x轴上的点Q旋转180°得到,
青果学院∴顶点N、P关于点Q成中心对称,
由(2)得点N的纵坐标为5,
设点N坐标为(m,5),作PH⊥x轴于H,作NG⊥x轴于G,作PR⊥NG于R,
∵旋转中心Q在x轴上,
∴EF=AB=2AH=6,
∴EG=3,点E坐标为(m-3,0),H坐标为(2,0),R坐标为(m,-5),
根据勾股定理,得PN2=NR2+PR2=m2-4m+104,PE2=PH2+HE2=m2-10m+50,NE2=52+32=34,
①当∠PNE=90°时,PN2+NE2=PE2
解得m=-
44
3
,即N点坐标为(-
44
3
,5).
②当∠PEN=90°时,PE2+NE2=PN2
解得m=-
10
3
,即N点坐标为(-
10
3
,5).
③∵PN>NR=10>NE,
∴∠NPE≠90°;
综上所得,当N点坐标为(-
44
3
,5)或(-
10
3
,5)时,以点P、N、E为顶点的三角形是直角三角形.
青果学院解:(1)由抛物线C1:y=a(x-2)2-5得顶点P的坐标为(2,-5);
∵点A(-1,0)在抛物线C1上,
∴a(-3)2-5=0,
解得:a=
5
9


(2)连接PM,作PH⊥x轴于H,作MG⊥x轴于G,
∵点P、M关于点A成中心对称,
∴PM过点A,且PA=MA,
∴△PAH≌△MAG,
∴MG=PH=5,AG=AH=3.
∴顶点M的坐标为(-4,5),
∵抛物线C2与C1关于x轴对称,抛物线C3由C2平移得到,
∴抛物线C3的表达式y=-
5
9
(x+4)2+5


(3)∵抛物线C4由C1绕x轴上的点Q旋转180°得到,
青果学院∴顶点N、P关于点Q成中心对称,
由(2)得点N的纵坐标为5,
设点N坐标为(m,5),作PH⊥x轴于H,作NG⊥x轴于G,作PR⊥NG于R,
∵旋转中心Q在x轴上,
∴EF=AB=2AH=6,
∴EG=3,点E坐标为(m-3,0),H坐标为(2,0),R坐标为(m,-5),
根据勾股定理,得PN2=NR2+PR2=m2-4m+104,PE2=PH2+HE2=m2-10m+50,NE2=52+32=34,
①当∠PNE=90°时,PN2+NE2=PE2
解得m=-
44
3
,即N点坐标为(-
44
3
,5).
②当∠PEN=90°时,PE2+NE2=PN2
解得m=-
10
3
,即N点坐标为(-
10
3
,5).
③∵PN>NR=10>NE,
∴∠NPE≠90°;
综上所得,当N点坐标为(-
44
3
,5)或(-
10
3
,5)时,以点P、N、E为顶点的三角形是直角三角形.
考点梳理
二次函数综合题.
(1)根据函数的解析式可得出顶点P的坐标为(2,-5),将点A的坐标代入函数解析式,可得出a的值;
(2)连接PM,作PH⊥x轴于H,作MG⊥x轴于G,先判断△PAH≌△MAG,继而得出点M的坐标,代入可得出C3的解析式.
(3)设点N坐标为(m,5),作PH⊥x轴于H,作NG⊥x轴于G,作PR⊥NG于R,根据中心对称的知识可得出点E、H、R的坐标,分别表示出PN2、PE2、NE2,讨论即可得解.
此题属于二次函数的综合题,涉及了待定系数法求二次函数解析式、二次函数图象的旋转变换,难点在第三问,关键是得出点E、点H、点R的坐标,表示出直角三角形PEN三边的平方,然后讨论得出答案,难度较大.
综合题;压轴题.
找相似题