二次函数综合题.
(1)已知了A点的坐标,即可得出OA的长,由于AB与圆O相切,因此OC⊥AB,可在直角三角形OAC中,根据OA的长和圆的半径求出∠BAO的度数.
(2)已知了∠BAO的度数和OA的长,可在直角三角形BOA中用三角函数求出OB的长,即可得出B点的坐标,进而可用待定系数法求出直线AB的解析式.
(3)根据抛物线的对称性可知,抛物线的顶点和它与x轴的两个交点构成的直角三角形应该是等腰直角三角形,已知了这个等腰直角三角形的斜边长为2,那么斜边上的高应该是1,即抛物线顶点的纵坐标的绝对值为1.因此可根据直线AB的解析式设出抛物线的顶点坐标,然后根据抛物线顶点纵坐标绝对值为1求出抛物线的顶点坐标,因此来求出抛物线的解析式.
本题考查了解直角三角形的应用、切线的性质、一次函数解析式的确定以及二次函数的相关知识等知识点.
压轴题.