题目:

如图,在平面直角坐标系中,抛物线经过A(-1,0),B(3,0),C(0,-1)三点.
(1)求该抛物线的表达式;
(2)点Q在y轴上,点P在抛物线上,要使以点Q、P、A、B为顶点的四边形是平行四边形,求所有满足条件的点P的坐标.
答案

解:(1)设该抛物线的表达式为y=ax
2+bx+c根据题意,
得:
,
解之得
,
∴所求抛物线的表达式为y=
x
2-
x-1;
(2)①AB为边时,只要PQ∥AB且PQ=AB=4即可.
又知点Q在y轴上,
∴点P的横坐标为4或-4,这时符合条件的点P有两个,分别记为P
1,P
2.
而当x=4时,y=
;
当x=-4时,y=7,
此时P
1(4,
)、P
2(-4,7).
②当AB为对角线时,只要线段PQ与线段AB互相平分即可,
又知点Q在y轴上,Q点横坐标为0,且线段AB中点的横坐标为1,
∴点P的横坐标为2,这时符合条件的P只有一个记为P
3.
而且当x=2时y=-1,此时P
3(2,-1),
综上,满足条件的P为P
1(4,
)、P
2(-4,7)、P
3(2,-1).

解:(1)设该抛物线的表达式为y=ax
2+bx+c根据题意,
得:
,
解之得
,
∴所求抛物线的表达式为y=
x
2-
x-1;
(2)①AB为边时,只要PQ∥AB且PQ=AB=4即可.
又知点Q在y轴上,
∴点P的横坐标为4或-4,这时符合条件的点P有两个,分别记为P
1,P
2.
而当x=4时,y=
;
当x=-4时,y=7,
此时P
1(4,
)、P
2(-4,7).
②当AB为对角线时,只要线段PQ与线段AB互相平分即可,
又知点Q在y轴上,Q点横坐标为0,且线段AB中点的横坐标为1,
∴点P的横坐标为2,这时符合条件的P只有一个记为P
3.
而且当x=2时y=-1,此时P
3(2,-1),
综上,满足条件的P为P
1(4,
)、P
2(-4,7)、P
3(2,-1).