试题
题目:
如图,二次函数y=ax
2
+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,D是图象上的一点,M为抛物线的顶点.已知A(-1,0),C(0,5),D(1,8).
(1)求抛物线的解析式.
(2)求△MCB的面积.
答案
解:(1)由题意得,
0=a-b+c
5=c
8=a+b+c
,
解得:
a=-1
b=4
c=5
∴y=-x
2
+4x+5.
(2)令y=0,得-x
2
+4x+5=0,
解得:x
1
=5,x
2
=-1,
∴B(5,0),
由y=-x
2
+4x+5=-(x-2)
2
+9,得M(2,9),
作ME⊥y轴于点E,
则S
△MCB
=S
梯形MEOB
-S
△MCE
-S
△OBC
=
1
2
(2+5)×9-
1
2
×4×2-
1
2
×5×5=15.
解:(1)由题意得,
0=a-b+c
5=c
8=a+b+c
,
解得:
a=-1
b=4
c=5
∴y=-x
2
+4x+5.
(2)令y=0,得-x
2
+4x+5=0,
解得:x
1
=5,x
2
=-1,
∴B(5,0),
由y=-x
2
+4x+5=-(x-2)
2
+9,得M(2,9),
作ME⊥y轴于点E,
则S
△MCB
=S
梯形MEOB
-S
△MCE
-S
△OBC
=
1
2
(2+5)×9-
1
2
×4×2-
1
2
×5×5=15.
考点梳理
考点
分析
点评
专题
二次函数综合题.
(1)将已知的三点坐标代入抛物线中,即可求得抛物线的解析式.
(2)可根据抛物线的解析式先求出M和B的坐标,由于三角形MCB的面积无法直接求出,可将其化为其他图形面积的和差来解.过M作ME⊥y轴,三角形MCB的面积可通过梯形MEOB的面积减去三角形MCE的面积减去三角形OBC的面积求得.
本题考查了二次函数解析式的确定以及图形面积的求法,不规则图形的面积通常转化为规则图形的面积的和差.
综合题.
找相似题
(2013·淄博)如图,Rt△OAB的顶点A(-2,4)在抛物线y=ax
2
上,将Rt△OAB绕点O顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为( )
(2010·石景山区一模)已知:如图1,等边△ABC为2
3
,一边在x上且A(1-
3
,0),AC交y轴于点,过点E作EF∥AB交BC于点F.
(1)直接写出点B、C的坐标;
(2)若直线y=kx-1(k≠0)将四边形EABF的面积等分,求k的值;
(3)如图2,过点A、B、C线与y轴交于点D,M为线段OB上的一个动点,过x轴上一点G(-2,0)作DM的垂线,垂足为H,直线GH交y轴于点N,当M在线段OB上运动时,现给出两个结论:①∠GNM=∠CDM;②∠MGN=∠DCM,其中只有一个是正确的,请你判断哪个结论正确,并证明.
(2010·同安区质检)已知:如图,抛物线y=ax
2
+bx+2与x轴的交点是A(3,0)、B(6,0),与y轴的交点是C.
(1)求抛物线的函数表达式;
(2)设P(x,y)(0<x<6)是抛物线上的动点,过点P作PQ∥y轴交直线BC于点Q.
①当x取何值时,线段PQ的长度取得最大值,其最大值是多少?
②是否存在这样的点P,使△OAQ为直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.
(2010·武昌区模拟)抛物线y=ax
2
+bx+c与x轴交于A,B两点,与y轴交于点C;
(1)Q(2,k)是该抛物线上一点,且AQ⊥BQ,则ak的值为
-1
-1
.
(2)若点A(-1,0),B(3,0)C(0,3).
①求抛物线的解析式;
②点M在x轴上方抛物线上,点N在y轴负半轴上,且四边形ACMN是等腰梯形,求点M的坐标.
(2010·秀洲区一模)如图,平面直角坐标系中,点O(0,0)、A(1,0),过点A作x轴的垂线交直线y=x于点B
,以O为圆心,OA为半径的圆交y轴于C、D两点,抛物线y=x
2
+bx+c经过B、D.
(1)求b,c的值;
(2)设抛物线的对称轴交x轴于点E,连接DE并延长交⊙O于F,求EF的长;
(3)若⊙O交x轴负半轴于点G,过点C作⊙O的切线交DG的延长线于点P.
探究:点P是否在抛物线上?请说明理由.